Индуцирование электрическим полем новой соразмерной фазы для кристалла [N(CH₃)₄]₂CuCl₄

© Д.Г. Санников

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 119333 Москва, Россия

E-mail: sannikov@ns.crys.ras.ru

(Поступила в Редакцию 27 мая 2004 г.)

Теоретически рассмотрено индуцирование новой соразмерной фазы с безразмерным волновым числом q = 1/3 внешним электрическим полем для кристалла $[N(CH_3)_4]_2$ CuCl₄. Построена фазовая диаграмма без поля и с полем на плоскости двух коэффициентов термодинамического потенциала.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 03-02-16104).

Теоретические фазовые диаграммы температура Tдавление P для кристалла [N(CH₃)₄]₂CuCl₄ (TMA-CuCl) были построены в [1,2]. Они довольно хорошо совпадают с экспериментальными T-P-диаграммами, измеренными в [3-5]. На этих диаграммах присутствуют фазы: исходная C (симметрия Pmcn), несоразмерная IC, соразмерная $C_{m/l}$, где m/l – значение безразмерного волнового числа $q_{m/l}$, характеризующего фазу. Для каждой фазы $C_{m/l}$ (кроме $C_{0/l} c q_{0/l} = 0$) существует два разных решения и соответственно может быть две разных фазы с разной симметрией (таблица в [1,2]; возможное, но маловероятное третье решение нас здесь интересовать не будет). Реализация того или иного решения (фазы) зависит от знака коэффициента при анизотропном инварианте в термодинамическом потенциале (см. далее).

Определенным внешним воздействием на кристалл (электрическим полем, механическим напряжением) можно индуцировать другую фазу с тем же $q_{m/l}$, и на фазовой диаграмме T-P появится новая соразмерная фаза $C_{m/l}$. Цель настоящей работы — теоретическое рассмотрение индуцирования внешним электрическим полем новой $C_{1/3}$ фазы.

1. Термодинамические потенциалы

Теоретический подход к построению T-P-диаграмм для семейства ТМА-кристаллов изложен в [2] (см. также [1,6,7]). Запишем термодинамические потенциалы для фаз $C_{1/3}$ и *IC* кристалла ТМА–СuCl при наличии электрического поля E_x (P_x — поляризация, направленная вдоль оси x)

$$\Phi_{1/3} = \alpha(q_{1/3})\rho^2 + \beta\rho^4 + \gamma\rho^6 - \alpha'_3\rho^6 \cos 6\varphi - g_3 P_x \rho^3 \cos 3\varphi + sP_x^2 - P_x E_x,$$

$$\Phi_{IC} = \alpha(b)\rho^2 + \beta\rho^4 + \gamma\rho^6 + sP_x^2 - P_x E_x,$$
 (1)

где предполагается, что коэффициенты $\beta > 0$, $\gamma > 0$, s > 0. Формулы (1) при $E_x = 0$ и $P_x = 0$ совпадают с (1) и (2) в [1].

Зависимость коэффициента упругости $\alpha(q)$ мягкой ветви спектра нормальных колебаний кристалла от безразмерного волнового числа $q = k_z/c^*$ определяется выражением

$$\alpha(q) = \alpha - \delta q^2 - \kappa q^4 + \tau q^6 \ (\kappa > 0, \ \tau > 0),$$
 (2)

которое можно переписать в виде

$$\begin{aligned} \alpha(q) &= a + \Delta(q), \quad \Delta(q) = \tau \, (b^2 - q^2)^2 [q^2 + 2(b^2 - q_L^2)], \\ \delta &= \tau \, b^2 (3b^2 - 4q_L^2), \quad q_L^2 \equiv \kappa/2\tau, \quad \Delta_3 = \Delta(q_{1/3}), \end{aligned}$$

где *а* и *b* — координаты минимума мягкой ветви (2) в произвольной точке зоны Бриллюэна.

Удобно перейти к безразмерным переменным ϕ , R, P, E и параметрам A_{γ} , A_3 , g, G, B, D, Q_L , A, D_3 (Q — число)

$$\begin{split} \Phi &= \phi \Phi_0, \quad \rho = RR_0, \quad P_x = PP_0, \quad E_x = EE_0, \\ \Phi_0 &= P_0^2 = E_0^2 = (\tau Q^6)^2 / \beta, \quad R_0^2 = \tau Q^6 / \beta, \\ \gamma &= 4\beta^2 A_\gamma / \tau Q^6, \quad |\alpha'_3| = 4\beta^2 A_3 / \tau Q^6, \quad g_3^2 = 4\beta^2 g^2 / \tau Q^6, \\ G &= g^2 / 8s, \, b = BQ, \quad q_L = Q_L Q, \quad \delta = D\tau Q^4, \\ a &= -A\tau Q^6, \quad \Delta_3 = D_3 \tau Q^6. \end{split}$$

Термодинамические потенциалы (1) приобретают теперь вид (полагаем $\alpha'_3 < 0$, см. далее)

$$\phi_{1/3} = -(A - D_3)R^2 + R^4 + 4A_{\gamma}R^6 + 4A_3R^6\cos 6\varphi$$

- 2gPR³ cos 3\varphi + sP² - PE,
$$\phi_{IC} = -AR^2 + R^4 + 4A_{\gamma}R^6 + sP^2 - PE.$$
(5)

2. Равновесные значения

Варьируя $\phi_{1/3}$ (5) по φ и по *P*, получим два решения — фазы c_1 и c_2 .

$$c_1: \cos 3\varphi = gE/16s(A_3 - G)R^3, P_1 = A_3E/2s(A_3 - G);$$

$$c_2: \cos 3\varphi = g/|g|, \quad P_2 = |g|R^3/s + E/2s.$$
 (6)

Знак коэффициента α'_3 выбираем такой ($\alpha'_3 < 0$), чтобы в отсутствие поля, E = 0, реализовалось решение: фаза c_1

(симметрия $P12_1c1$, см. таблицу в [1] или [2]). Первое слагаемое в P_2 — спонтанная поляризация (фаза c_2 — несобственная сегнетоэлектрическая; симметрия $P2_1cn$).

Подставив (6) в (5), найдем

$$\phi_{1} = -(A - D_{3})R^{2} + R^{4} + 4(A_{\gamma} - A_{3})R^{6}$$
$$- GE^{2}/4s(A_{3} - G) - E^{2}/4s,$$
$$\phi_{2} = -(A - D_{3})R^{2} + R^{4} + 4(A_{\gamma} + A_{3} - 2G)R^{6}$$
$$- |g|ER^{3}/s - E^{2}/4s.$$
(7)

Варьируя ϕ_{IC} (5) по *P* и подставляя полученное *P* в (5), найдем

$$P = E/2s, \quad \phi_C = -E^2/4s,$$

$$\phi_{IC} = -AR^2 + R^4 + 4A_{\gamma}R^6 - E^2/4s, \quad (8)$$

где добавлен потенциал ϕ_C для исходной фазы. Заметим, что слагаемое $E^2/4s$ одинаково для всех фаз, и в дальнейшем его отбрасываем.

Варьируя потенциалы (7), (8) по R и подставляя полученные выражения для R в ϕ , найдем

$$\phi_{1} = -\frac{1}{4}(A - D_{3})^{2} \{1 - 2(A_{\gamma} - A_{3})(A - D_{3})\}$$

$$- GE^{2}/4s(A_{3} - G),$$

$$\phi_{2} = -\frac{1}{4}(A - D_{3})^{2} \{1 - 2(A_{\gamma} + A_{3} - 2G)(A - D_{3})$$

$$+ 8[GE^{2}/4s(A - D_{3})]^{1/2}\},$$

$$\phi_{IC} = -\frac{1}{4}A^{2} \{1 - 2A_{\gamma}A\}.$$
(9)

В (9) проводились разложения в ряды по малым слагаемым. Предполагается, что $A_{\gamma}A \ll 1$ и $E^2/4s \ll 1$. Заметим, что выражение для ϕ_2 в (9) справедливо лишь при $A-D_3 > 0$.

Границы между фазами и фазовая диаграмма

Приравнивая потенциалы (9) друг другу и снова используя разложения по малым слагаемым, получим выражения для границ между фазами.

$$C-IC: A = 0,$$

$$c_{1}-IC: D_{3} = A_{3}A^{2} + 2GE^{2}/4s(A_{3} - G)A,$$

$$C-c_{2}: -A = -D_{3} + 8GE^{2}/4s, \quad (A < 0),$$

$$c_{1}-c_{2}: A = D_{3} + [GE^{2}/4s(A_{3} - G)^{2}]^{1/3},$$

$$c_{2}-IC: D_{3} = -(A_{3} - 2G)A^{2} + 4[(GE^{2}/4s)A]^{1/2}, \quad (A > D_{3}),$$

$$c_{2}-IC: D_{3} = A + 8GE^{2}/4s.$$
(10)

Фазовая диаграмма на плоскости D, A. Наклонными прямыми, исходящими из точки O, обозначена граница $IC-C_{1/3}$ в отсутствие поля, E = 0, пунктиром — граница $C-c_2$, увеличенная в 10³ раз вдоль оси A.

Последнее выражение для границы c_2-IC получено в окрестности точки *K* (см. рисунок). Координаты точек *K*, *N* и *O* определяются из выражений для границ $C-c_2$ и c_1-c_2 (10), если в них положить $D_3 = 0$ для (*N* и *O*) и A = 0 (для *K*). Приведем координаты точек *M* (см. рисунок)

$$A = [GE^2/4s(A_3 - G)^2]^{1/3},$$

$$D_3 = (3A_3 - 2G)[GE^2/4s(A_3 - G)^2]^{2/3}.$$
 (11)

Заметим, что фазовый переход $c_1 - c_2$ — является переходом второго рода.

По формулам (10) можно построить фазовую диаграмму на плоскости D-A. Выбираем следующие значения параметров (такие же, как в [1]):

$$Q_L^2 = 0.2, \quad A_\gamma = A_3 = 2G = 0.36, \quad Q = 0.5.$$
 (12)

Положим $E^2/4s = 10^{-5}$. При таком выборе этого значения область существования фазы c_2 имеет заметные размеры (см. рисунок). Координаты точек M на оси D, как следует из (3), (4) и (11), соответствуют значениям q = 0.317 и 0.35 (координата точки O: q = 0.333). При $E^2/4s = 10^{-6}$ значение A в точке N будет меньше в $10^{1/3}$ раз, а между точками M — в $10^{2/3}$ раз и т.д., см. (11). Остается надеяться, что в эксперименте возможно достичь значений полей, при которых размеры индуцируемой фазы c_2 будут достаточными, чтобы ее можно было заметить на экспериментальной фазовой диаграмме T-P.

Теоретическую фазовую T-P-диаграмму, которую можно построить на основе диаграммы на плоскости D-A (см. рисунок), здесь не приводим, поскольку по виду она не сильно отличается от D-A-диаграммы (см. [1,2]).

Список литературы

- [1] Д.Г. Санников. ФТТ 42, 12, 2213 (2000).
- [2] H. Mashiyama, G.A. Kessenikh, D.G. Sannikov. Ferroelectrics 283, 109 (2003).
- [3] K. Gesi. J. Phys. Soc. Jpn. 65, 7, 1963 (1996).
- [4] S. Shimomura, H. Tarauchi, N. Hamaya, Y. Fujii. Phys. Rev. B 54, 10, 6915 (1996).
- [5] К. Gesi. Кристаллография 44, 1, 89 (1999).
- [6] D.G. Sannikov, G.A. Kessenikh, H. Mashiyama. J. Phys. Soc. Jpn. 69, 1, 130 (2000); ibid. 71, 6, 1435 (2002).
- [7] D.G. Sannikov, H. Mashiyama. J. Phys. Soc. Jpn. 71, 7, 1698 (2002); ibid. 72, 6, 1423 (2003).