Термодинамические и кинетические аспекты реконструкционных переходов на поверхности (001) GaAs

© Ю.Г. Галицын[¶], В.Г. Мансуров, С.П. Мощенко, А.И. Торопов

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 2 сентября 1999 г. Принята к печати 17 февраля 2000 г.)

Проведен кинетический и термодинамический анализ реконструкционных переходов на поверхности (001) арсенида галлия. Показано, что переход от Аs-стабилизированной $(2 \times 4)\beta 2$ до Ga-стабилизированной $(2 \times 4)\beta 2$ структуры в потоке As₄ является неравновесным фазовым переходом и осуществляется в условиях достижения определенной стационарной концентрации адатомов мышьяка на поверхности. Переход является непрерывным и описывается трехпараметрической изотермой. Движущей силой адсорбат-индуцированного перехода является энергия стабилизации фазы $(2 \times 4)\beta 2$, возникающая при образовании димеров мышьяка из адатомов мышьяка. Проведена оценка этой энергии. Обсуждаются особенности фазовых переходов, происходящих в потоке As₄ и в условиях десорбции пленки аморфного мышьяка.

1. Введение

Известно, что на поверхности (001) GaAs реализуется широкий спектр реконструкционных переходов от Ga-стабилизированной сверхструктуры (1×2) до As-стабилизированной $c(4 \times 4)$ [1–6]:

$$egin{aligned} (1 imes 2) &
ightarrow (4 imes 2)eta 2
ightarrow (3 imes 2)
ightarrow (3 imes 3) \ &
ightarrow (12 imes 6)
ightarrow (2 imes 6)
ightarrow (2 imes 4)lpha
ightarrow (2 imes 4)eta 2 \ &
ightarrow (2 imes 4)\gamma
ightarrow (2 imes 3)
ightarrow c(4 imes 4). \end{aligned}$$

Исследование реконструкционных переходов обычно осложнено тем обстоятельством, что в зависимости от процедуры приготовления и отжига поверхности может проявиться та или иная промежуточная реконструкция, что указывает на существенную роль кинетических факторов. В обзоре Yamaguchi, Horikoshi [7] было проведено детальное статистическое рассмотрение структурных переходов $(4 \times 2)\beta 2 \rightarrow (2 \times 4)\beta 2$ на (001) GaAs и InAs в рамках двумерной модели Изинга для решеточного газа адсорбированного мышьяка. При этом авторы использовали ряд упрощающих предположений. Хотя экспериментально фазовые переходы (ФП) исследовались в потоке молекул As₄, при анализе принималось адсорбционно-десорбционное равновесие поверхности с одноатомным газом мышьяка. Предполагалось также, что латеральное взаимодействие между димерами мышьяка на поверхности носит характер притяжения. Для GaAs энергия притяжения, оцененная авторами, составила 0.11 эВ и для InAs 0.15 эВ, что позволило им объяснить отличие в фазовых переходах: непрерывный ФП для GaAs и резкий ФП первого рода для InAs. Однако, как правило, взаимодействие между однотипными хемосорбированными частицами носит характер отталкивания [8]. Кроме того, авторы учитывали только поверхностную плоскость атомов, хотя хорошо известно, что в формировании той или иной реконструкции участвует два-три поверхностных моноатомных слоя. Роль промежуточных сверхструктур также игнорировалась.

В нашей работе разрабатывается более реалистичная модель структурных переходов на поверхности (001) GaAs в рамках теории адсорбат-индуцированных фазовых переходов и с учетом различных химических процессов, происходящих на поверхности.

2. Термодинамическое рассмотрение поверхностных фаз

Стабильность нестехиометрических поверхностей, как обычно, определяется минимумом свободного гиббсовского потенциала Ω . Данный потенциал является функцией естественных независимых переменных: температуры T и химического потенциала μ . При постоянных T и μ для приращения $d\Omega$ имеем $d\Omega = \sigma dS$, где σ — суммарная величина поверхностного напряжения и поверхностного натяжения (в дальнейшем будем ее называть поверхностной энергией), S — площадь поверхности. Отметим, что σ существенно положительная величина, и ее следует отличать от внутренней поверхностной энергии E_s . Для поверхностной фазы имеем

$$\Omega = \sigma \cdot S = E_s - T \cdot S_s + P \cdot d \cdot S - \mu_{As} \cdot N_{As} - \mu_{Ga} \cdot N_{Ga}, \quad (1)$$

где $\mu_{As,Ga}$ — химические потенциалы поверхностных атомов As и Ga, $N_{As,Ga}$ — количество атомов As и Ga на поверхности; $d \cdot S = V$ — объем поверхностной фазы, d — эффективная толщина поверхностного слоя. В силу малости давления газовой фазы над поверхностью третьим членом можно пренебречь. Будем нормировать все величины на элементарную площадь (1 × 1) идеальной нереконструированной поверхности (001) GaAs ($S = 16 \text{ Å}^2$). Тогда

$$\sigma_{(1\times 1)} = F_{s(1\times 1)} - \mu_{\mathrm{As}} \cdot n_{\mathrm{As}} - \mu_{\mathrm{Ga}} \cdot n_{\mathrm{Ga}}.$$
 (2)

[¶] E-mail: sergem@isp.nsc.ru

С помощью элементарных преобразований и предположения, что поверхность находится в равновесии с объемом ($\mu_{Ga} + \mu_{As} = \mu_{GaAs}$), выражение для σ можно представить в следующем виде:

$$\sigma_{(1\times1)} = \text{const} - \frac{1}{2} \left[\left(n_{\text{As}} - \frac{1}{4} \right) - \left(n_{\text{Ga}} - \frac{3}{4} \right) \right] \\ \times \left(\mu_{\text{As}} - \mu_{\text{As(bulk)}} \right), \tag{3}$$

где $n_{\text{Ga}} = 3/4$, $n_{\text{As}} = 1/4$ соответствуют фазе (1×2) , относительно которой отсчитываются поверхностные энергии других реконструкций. Определим численные значения химических потенциалов мышьяка и галлия. Из термодинамических данных [9] для равновесных давлений паров над конденсированными фазами нами вычислены химические потенциалы атомов Ga и As в различных средах (рис. 1). Отметим, что значения химических потенциалов $\mu_{As(bulk)} = -3.14 \, \mathrm{sB}$ и $\mu_{\text{Ga(bulk)}} = -3.10$ эВ хорошо совпадают с данными работы [10]. Разница в химических потенциалах, определяемая как $\mu_{As(bulk)} - \mu_{As(GaAs)} = 0.73$ эВ, $\mu_{\mathrm{Ga(bulk)}} - \mu_{\mathrm{Ga(GaAs)}} = 0.84$ эВ, и будет задавать термодинамически допустимую область изменения химических потенциалов атомов As и Ga на поверхности для возможных поверхностных реконструкций и переходов между ними.

Для реакций, в которых участвуют молекулярные газы (As₄, As₂), необходимо учесть вклады энергии связи атомов в молекуле и вращательной части химического потенциала молекулы. Так, для As₂ в равновесии имеем $\mu_{As}^{GaAs} = \frac{1}{2}\mu_{As_2}^{trans} + \frac{1}{2}E_{As_2}^{bond} + \frac{1}{2}\mu_{As_2}^{rot}$, и величина $\mu_{As}^{gas} = \mu_{As}^{GaAs} = -3.87$ эВ согласуется с величинами $\mu_{As_2}^{trans} = -3.51$ эВ, $E_{As_2}^{bond} = -3.95$ эВ, $\mu_{As_2}^{rot} = -0.15$ эВ. Колебательные вклады в атомные химические потенциалы малы, а их величины близки в молекуле и в конденсированной фазе.

Приведенные термодинамические данные свидетельствуют о том, что если реконструкционные переходы проводить в потоке As₄ в равновесных условиях, то для реализации полного набора реконструкций требуется изменять давление в широком диапазоне (приблизительно 12-14 порядков, см. рис. 1) или при фиксированном давлении ~ 10⁻⁶ Торр изменять температуру образца от 700 до 250°С. Поступательная часть химического потенциала молекулы As4, нормированная на атом мышьяка, будет при этом изменяться на $\frac{1}{4}\Delta\mu_{As_4}^{trans} = \frac{1}{4}(4.4 - 1.6) = 0.7$ эВ, что согласуется с приведенной выше величиной 0.73 эВ. Для перехода от $(4 \times 2)\beta 2$ до $(2 \times 4)\beta 2$ равновесный химический потенциал атома мышьяка на поверхности увеличивается на ~ 0.35 эВ (от -3.85 до -3.50 эВ). Однако в эксперименте при давлении As₄ 2.5 · 10⁻⁶ Topp переход осуществляется в области температур от 650 до 540°С [7], т.е. обеспечивается изменением поступательной части химического потенциала молекулы As4 от -2.77 до -2.42 эВ. Если бы переход осуществлялся действительно в равновесных условиях, тогда изменение

6* Физика и техника полупроводников, 2000, том 34, вып. 8

химического потенциала атома мышьяка в газовой фазе составило бы всего 0.09 эВ ($\frac{1}{4} \times 0.35 = 0.09$ эВ), что явно недостаточно для ФП. Следовательно, можно предположить, что необходимая концентрация атомов адсорбированного мышьяка обеспечивается эффективными неравновесными поверхностными реакциями разложения молекул As₄ до одноатомного As. Фактически данный реконструкционный переход является неравновесным фазовым переходом.

3. Кинетические аспекты в реконструкционных переходах

Как правило, реконструкционные переходы исследуются в потоке газа As_4 с типичными значениями давления 10^{-6} Торр, что значительно ниже равновесного давления над твердым мышьяком, но выше равновесного давления над GaAs (см. рис. 1). Следовательно, на поверхности GaAs будут происходить реакции разложения $As_4 \rightarrow 2As_2$ и $As_2 \rightarrow 2As$. Эти реакции будут необратимыми и существенно сдвинуты от равновесия в сторону образования продуктов разложения, в силу

Рис. 1. Зависимость равновесных парциальных давлений различных газов (в атм) над конденсированными средами от обратной температуры. Числа над прямыми соответствуют значениям химических потенциалов, рассчитанным по формуле $\mu_i = kT \ln[P/kT (h^2/2\pi mkT)^{3/2}].$

отсутствия таковых в газовой фазе. В свою очередь GaAs также нестабилен по отношению к реакции разложения на газообразные продукты Ga^{gas}, As^{gas}, As^{gas}. Однако этими реакциями в обычных экспериментальных условиях наблюдения реконструкционных переходов можно пренебречь. Запишем кинетическую схему поверхностных реакций с участием As₄:

$$\begin{array}{l} \operatorname{As}_{4}^{\operatorname{gas}} \stackrel{k_{1}}{\underset{k_{2}}{\longrightarrow}} \operatorname{As}_{4}^{*}, \quad 2\operatorname{As}_{4}^{*} + 2\operatorname{Ga}_{s} \stackrel{k_{3}}{\longrightarrow} 2\operatorname{As}_{2}^{\operatorname{chem}} + \operatorname{As}_{4}^{\operatorname{gas}}, \\ \\ 2\operatorname{As}_{2}^{\operatorname{chem}} + 2\operatorname{Ga}_{s} \stackrel{k_{4}}{\longrightarrow} 2\operatorname{Ga}_{s} + 2\operatorname{As}_{s}, \\ \operatorname{As}_{2}^{\operatorname{chem}} \stackrel{k_{5}}{\longrightarrow} \operatorname{As}_{2}^{\operatorname{gas}} + \operatorname{Ga}_{s}, \quad \operatorname{As}_{s} \stackrel{k_{6}}{\longrightarrow} \operatorname{As}_{s}^{\operatorname{gas}}, \end{array}$$

где k₁ и k₂ есть элементарные константы адсорбционнодесорбционного процесса взаимодействия As₄ с поверхностью с образованием молекулы As₄ в "precursor state" $(As_4^*), k_3$ — константа парного взаимодействия адсорбированных молекул, приводящая к диссоциации As₄^{*} по механизму Foxon и Joyce [11]. Процесс диссоциации молекул As^{chem}, приводящий к образованию на поверхности двухкоординированных атомов мышьяка согласно модели, предложенной в работе [12], описывается константой k4. k5 и k6 определяют десорбцию молекулы As2^{chem} и атома мышьяка соответственно. Кинетический анализ ранее проводился нами в работах [13,14] при исследовании процессов эпитаксиального роста GaAs (001). Для стационарной концентрации двухкоординированных атомов мышьяка на поверхности $\Theta_{As} = [As_s]/n_0$ (n_0 — будет определено далее) при давлении $As_4 P$ и температуре Tбудем иметь $\Theta_{\rm As} = L(P, T)F(\xi),$

где

$$L(P,T) = \frac{P}{P+P_0}, \quad F(\xi) = (\sqrt{1+\xi}-1)^2 \frac{1}{\xi},$$

в свою очередь

$$\xi = rac{4k_1k_3P}{k_2^2}(1+P/P_0)$$
и $P_0 = rac{k_6(k_4+k_5)}{k_1\cdot k_4}$

Функция $F(\xi)$ определяет эффективность конверсии тетрамера мышьяка в одноатомный мышьяк. При $\xi \to \infty$, $F(\xi) = 1$ и $\xi \ll 1$, $F(\xi) = \xi/4$. При $P > 10^{-6}$ Торр ξ большое и можно принять $F(\xi) = 1$ [4], тогда $\Theta_{As} = L(P,T)$ имеет лэнгмюровский вид, как если бы над поверхностью GaAs устанавливалось адсорбционнодесорбционное равновесие с газом мышьяка при давлении Р. Обратим внимание, что здесь Ро носит принципиально иной физический смысл, определяемый кинетическими константами k_i , чем в истинном адсорбционно-десорбционном равновесии, при котором $P_0 = [2\pi m kT/h^2]^{3/2} \exp(-E_{ads}/kT)kT$. В работе [7] была принята модель адсорбционно-десорбционного равновесия поверхности с одноатомным газом без должного кинетического анализа. В нашей кинетической модели параметр Р₀ определяет избыточную стационарную концентрацию адсорбированных двухкоординированных атомов мышьяка, необходимую для реконструкционного перехода. В силу стационарности концентрации адсорбированного мышьяка можно определить эффективный химический потенциал атомов мышьяка в газовой фазе по соотношению $\mu_{As}^{gas} = kT \cdot \ln(P/P'_0)$ или $\frac{\mu_{As}^{gas} + E_a}{kT} = \ln(P/P_0)$, где E_a — эффективная энергия адсорбции атома мышьяка и P'_0 определяется из аппроксимации $P_0 = P'_0 \exp(-E_a/kT)$.

4. Статистические аспекты реконструкционных переходов

Обсудим детально зависимость поверхностной энергии (3) для различных реконструкций от химического потенциала μ_{As} и концентрации поверхностных атомов мышьяка и галлия. Следует ожидать, что при переходе от Ga-стабизированной к Аs-стабилизированной поверхности значения σ будут находиться в области значений, ограниченной сверху поверхностным натяжением жидкого галлия и снизу поверхностным натяжением и напряжением твердого мышьяка, т.е. от 0.72 до 0.17 эВ (эти значения приведены для площади ячейки (1×1) GaAs). Действительно, теоретически рассчитанные изменения поверхностных энергий различных реконструкций при этом переходе находятся в указанной области [1,4,15–17]. Расчетные зависимости $\sigma(\mu_{As})$, полученные с использованием констант из работ [1,4,15], показаны на рис. 2. В таблице приведены концентрации трехкоординированных атомов As (n_{As}) и Ga (n_{Ga}) и концентрации димеров мышьяка (D_{As}) и галлия (D_{Ga}) , также нормированных на ячейку (1 × 1). Данные получены из экспериментальных работ по сканирующей туннельной микроскопии различных реконструкций [1–6]. При переходе от Ga-стабилизированной к As-стабилизированной поверхности плотность димеров мышьяка увеличивается, а плотность димеров галлия уменьшается. Все сверхструктуры, расположенные в ряду между $(4 \times 2)\beta 2$ и $(2 \times 4)\beta 2$ структурами, следует рассматривать как переходные метастабильные реконструкции, поскольку даже наиболее стабильная из них — структура $(2 \times 4)\alpha$, имеющая максимальное число димеров As, является

Фаза	$n_{\rm As}$	n _{Ga}	D_{As}	$D_{ m Ga}$
(1×1)	1/4	3/4	0	0
$(4 \times 2)\beta 2$	1/2	3/4	0	3/8
(3×2)	2/3	2/3	0	3/9
$(4 \times 2)\alpha$	1/2	1/2	0	1/4
(3×3)	2/3	2/3	1/9	2/9
(2×6)	2/3	2/3	1/6	1/6
(12×6)	27/72	38/72	3/16	1/9
$(2 \times 4)\alpha$	1/2	1/2	1/4	0
$(2 \times 4)\beta 2$	3/4	1/2	3/8	0
(2×3)	1	1/4	1/6	0
$c(4 \times 4)$	5/4	0	3/8	0

Рис. 2. Зависимость поверхностной энергии $\sigma_{(1\times 1)}$ различных реконструкций химического потенциала атомов мышьяка на поверхности.

Рис. 3. Изменение поверхностной энергии $\sigma_{(1\times 1)}$ от μ_{As} при $\Phi\Pi (4 \times 2)\beta 2 \rightarrow (2 \times 4)\beta 2$. $A - \Phi\Pi$ в потоке As₄, $B - \Phi\Pi$ при адсорбции аморфной пленки мышьяка, C — равновесный $\Phi\Pi$. На вставке — изменение потенциальной энергии при $\Phi\Pi$. Цифры (1) и (2) положения атомов галлия в фазах (4 × 2) и (2 × 4) соответственно; кривые *a* и *b* — до и после адсорбции мышьяка.

нестабильной согласно теоретической работе [15]. Можно классифицировать относительную стабильность переходных реконструкций в соответствии с концентрацией димеров мышьяка.

Рассмотрим детальнее ФП между стабильными реконструкциями $(4 \times 2)\beta 2$ и $(2 \times 4)\beta 2$. Из рис. 2 видно, что при $\mu_{As} = -3.65$ эВ поверхностные энергии фаз сравниваются. Однако очевидно, что еще в области существования $(4 \times 2)\beta 2$ -фазы адсорбция мышьяка на поверхность имеет место, так как всякая чистая поверхность нестабильна по отношению к адсорбции газа и происходит понижение поверхностной энергии. Для нашего случая, учитывая $d\sigma = -\Theta_{As}(\mu_{As})d\mu_{As} = -kT \cdot \Theta_{As}(P)dP/P$, понижение поверхностной энергии в зависимости от давления As₄ и температуры образца будет описываться выражением

$$\sigma_{(1\times 1)}(P) = \sigma_{(1\times 1)}(n_{\rm As}, n_{\rm Ga}) - n_0 \cdot kT \cdot \ln(1 + P/P_0), \quad (4)$$

где $n_0 = 2 \cdot D_{As}^{(2 \times 4)} - 2 \cdot D_{As}^{(4 \times 2)} = 3/4$, P_0 — кинетический параметр, определенный выше. При достижении критической концентрации двухкоординированных атомов мышьяка Θ_{As} происходит фазовый реконструкционный переход, с образованием трехкоординированных атомов мышьяка в димерной форме ($2\Theta_{As} \rightarrow D_{As}$). Данный процесс перехода можно описывать кинетически, однако применим и статистический подход, который яснее демонстрирует физическую сущность предлагаемой нами модели и термодинамические движущие силы $\Phi\Pi$.

Прежде всего в процессе ФП должен возникать энергетический выигрыш, который, по нашему мнению, пропорционален концентрации образующихся димеров мышьяка в новой фазе, т.е. определим энергию стабилизации новой фазы как $E_{st} = \varepsilon_1 \cdot D_{As}$. С другой стороны, чтобы образовать двухкоординированный атом мышьяка, требуется соответствующая конфигурация атомов Ga в исходной реконструкции [12], т.е. перестройка определенной доли атомов Ga (Θ_{Ga}) в верхней плоскости. При этом происходит разрушение димеров Ga. Тогд энергетические затраты будут пропорциональны изменению концентрации димеров галлия в исходной реконструкции $\Delta E = \varepsilon_2 \cdot D_{\text{Ga}}$. Изменение потенциальной энергии при ФП показано на вставке рис. 3. Переход атомов галлия, обеспечивающий перестройку исходной поверхности, происходит из позиции (1) в (2). Эти два параметра $(E_{st}, \Delta E)$, а также энергия отталкивания однотипных адсорбированных частиц (E_i) будут определять трехпараметрическую изотерму фазового перехода.

Применяя обычный статистический анализ к системе, состоящей из адсорбированного слоя мышьяка и перестроенной поверхности атомов галлия в приближении среднего поля для химического потенциала адсорбированных атомов мышьяка, получаем

$$\mu_{\rm As} = \frac{\partial F_{(1 \times 1)}}{\partial \Theta_{\rm As}} = -E_a + E_i \cdot \Theta_{\rm As} + kT \cdot \ln\left(\frac{\Theta_{\rm As}}{1 - \Theta_{\rm As}}\right) - E_{st} \cdot \Theta_{\rm Ga}.$$
 (5)

Дополнительный вклад в свободную энергию поверхности при перестройке исходного поверхностного слоя атомов галлия равен

$$\Delta F_{s(1\times1)} = \Delta E \Theta_{Ga} + kT [\Theta_{Ga} \ln \Theta_{Ga} + (1 - \Theta_{Ga}) \ln (1 - \Theta_{Ga})] - E_{st} \Theta_{Ga} \Theta_{As}.$$

Минимизируя данный вклад по параметру Θ_{Ga} и подставляя это значение в (5), найдем

$$\exp\left(\frac{\mu_{As} + E_a}{kT}\right) = \frac{\Theta_{As}}{1 - \Theta_{As}}$$
$$\times \exp\left[\frac{E_i \cdot \Theta_{As}}{kT} - \frac{E_{st}}{kT\left(1 + \exp\left(\frac{\Delta E - E_{st}\Theta_{As}}{kT}\right)\right)}\right]. (6)$$

Зависимость ФП от давления As₄ и температуры следует из равенства эффективного химического потенциала атома мышьяка в газовой фазе и химического потенциала в адсорбированной фазе:

$$P/P_{0} = \frac{\Theta_{As}}{1 - \Theta_{As}}$$

$$\times \exp\left[\frac{E_{i} \cdot \Theta_{As}}{kT} - \frac{E_{st}}{kT\left(1 + \exp\left(\frac{\Delta E - E_{st}\Theta_{As}}{kT}\right)\right)}\right]. (7)$$

В результате мы получили трехпараметрическую изотерму, существенно отличающуюся как от изотермы Лэнгмюра, так и от изотермы Фаулера–Гугенгейма, принятой в [7]. Подобные трехпараметрические изотермы применялись для описания реконструкционных переходов на поверхностях металлов при адсорбции различных газов [18].

Если фазовые переходы происходят в температурной области 400-800°С, тогда величины параметров обычно находятся в пределах $\Delta E = 0.1 - 0.4$ эВ, $E_{st} = 0.2 - 0.8 \ \text{sB}, E_i = 0.05 - 0.1 \ \text{sB}.$ На рис. 4 представлены изотермы при изменении параметров $\Delta E = 0.1 - 0.6$ (рис. 4, *a*), $E_{st} = 0.1 - 0.6$ (рис. 4, *b*) и изменении температуры 400-900°С (рис. 4, с). Видно, что такие изотермы описывают как фазовые переходы первого рода (появление ветви нестабильности), так и непрерывные фазовые переходы. При параметрах F_i = 0.1 и ΔE \leqslant 0.2 эВ для E_{st} \leqslant 0.4 эВ будут наблюдаться непрерывные фазовые переходы; при этом критическая температура перехода ~ 600°С. Это соответствует как нашим экспериментальным данным, так и данным работы [7].

Оценим для GaAs энергию стабилизации. Принимая энергию димерной связи мышьяка (нормированной на ячейку (1×1)) $\varepsilon_1 \sim 1$ эВ [19] и $D_{As} = 3/8$, получим $E_{st} = 0.375$ эВ. С другой стороны, ΔE должна быть меньше E_{st} , так как димерная связь галлия слабее мы-

Рис. 4. Изотермы адсорбции мышьяка при ФП (4 × 2) β 2 \rightarrow (2 × 4) β 2 для различных параметров: a - T = 873 K, $\Delta E = 0.1 - 0.6$ эВ, $E_i = 0.1$ эВ, $E_{st} = 0.4$ эВ; b - T = 873 K, $\Delta E = 0.2$ эВ, $E_i = 0.1$ эВ, $E_{st} = 0.1 - 0.6$ эВ; c - T = 673 - 1173 K, $\Delta E = 0.2$ эВ, $E_i = 0.1$ эВ, $E_{st} = 0.4$ эВ.

шьяковой. Это означает, что даже при непосредственном реконструкционном переходе $(4 \times 2)\beta 2 \rightarrow (2 \times 4)\beta 2$ ФП будет непрерывным. Поскольку в реальном эксперименте переход происходит через промежуточные реконструкции, для которых число димеров $D_{\rm As} < 3/8$ (см. таблицу), каждый ФП из одной промежуточной реконструкции в другую будет также непрерывным.

Однако если в работе [7] авторы считают физической причиной ФП латеральное притяжение димеров мышьяка, то в нашем случае движущей силой перехода является химическое превращение двухкоординированного атома мышьяка в трехкоординированный при образовании димерной связи. Отметим, что в этом процессе не только не предполагается латерального притяжения между атомами, напротив, мы включили латеральное отталкивание, естественное для одноименных адатомов, что не препятствует реализации фазового перехода.

ФП в потоке As₄ происходит через промежуточную реконструкцию (3×1) , являющуюся версией фаз (3×2) и (3 × 3) [2,7]. С другой стороны, при десорбции слоя аморфного мышьяка наблюдаются промежуточные фазы $(2 \times 6), (12 \times 6)$ и $(2 \times 4)\alpha$ [1,2]. Это неудивительно, поскольку кинетический параметр Ро для этих двух случаев совершенно различный. Аморфную пленку мышьяка на поверхности, находящуюся в равновесии с этой поверхностью, удобно характеризовать решеточным газом с концентрацией C. Тогда $\Theta_{As} = C/(C + C_0)$, однако C_0 (аналог P_0) будет характеризоваться другими кинетическими константами. Очевидно, ФП в потоке As₄ проходит в условиях относительного дефицита адсорбированного мышьяка на поверхности, а при десорбции аморфной пленки — избытка мышьяка. Поэтому в первом случае можно ожидать реализации Ga-стабилизированных промежуточных фаз типа $(4 \times 2)\alpha$, (3×2) и (3×3) ; во втором более вероятно появление As-стабилизированных фаз типа $(2 \times 4)\alpha$, (2×6) и (12×6) . На рис. 3 показано изменение поверхностной энергии при фазовом переходе в обоих случаях. Кривая А соответствует ФП в потоке As₄, кривая *В* — переходу при десорбции монослойной пленки аморфного мышьяка. Видно, что кривая А пересекает область стабильности галлиевых промежуточных фаз, кривая В проходит только область стабильности мышьяковых фаз. Кривая С соответствует переходу в условиях адсорбционно-десорбционного равновесия моноатомного газа мышьяка с поверхностью.

5. Заключение

Таким образом, проведенный в работе термодинамический и кинетический анализ $\Phi\Pi~(4 \times 2)\beta 2 \rightarrow (2 \times 4)\beta 2$ на (001) GaAs показывает, что данный переход осуществляется в условиях стационарной, но не равновесной концентрации адатомов мышьяка на поверхности. Предложен новый механизм реконструкционного перехода, включающий квазихимическую реакцию превращения двухкоординированного атома мышьяка в трехкоординированный в димерной форме. Переход является непрерывным и описывается трехпараметрической изотермой. Движущей силой перехода является энергия стабилизации фазы $(2 \times 4)\beta 2$ при адсорбции мышьяка. Проведена оценка данной энергии. Проанализированы особенности фазовых переходов, происходящих под воздействием потока As₄ на поверхность и в условиях десорбции пленки аморфного мышьяка. Основным параметром, определяющим относительную стабильность промежуточных реконструкций, является плотность мышьяковых димеров.

Авторы благодарят Российский фонд фундаментальных исследований (грант № 99-02-16676) и Министерство науки (грант № 5.7.99, программа "Поверхностные атомные структуры") за поддержку данной работы.

Список литературы

- Q. Xue, T. Hashizume, A. Ichimiya, T. Ohno, Y. Hasegawa, T. Sakuraj. Sci. Rep. RITU, A44, 113 (1997).
- [2] I. Chizhov, G. Lee, R.F. Willis, D. Lubyshev, D.L. Miller. Surf. Sci., 419, 1 (1998).
- [3] A.R. Avery, D.M. Holmes, T.S. Jones, B.A. Joyce, G.A. Briggs. Phys. Rev. B, 50, 8098 (1994).
- [4] Q. Xue, T. Hashizume, T. Sakuraj. Progr. Surf. Sci., 56, 1 (1997).
- [5] T. Hashizume, Q. Xue, J. Zhou, A. Ichimiya, T. Sakukaj. Phys. Rev. Lett., 73, 2208 (1994).
- [6] J. Behrend, M. Wassermeier, L. Daweritz, K.H. Ploog. Surf. Sci., 342, 63 (1995); 372, 307 (1997).
- [7] H. Yamaguchi, Y. Horikoshi. Phys. Rev. B, 51, 9836 (1995).
- [8] V.P. Zhdanov, B. Kasemo. Surf. Sci. Reports, 20, 113 (1994).
- [9] J.B. Arthur. J. Phys. Chem. Sol., 28, 2257 (1967).
- [10] G.X. Qian, R.M. Martin, D.J. Chadi. Phys. Rev. B, 38, 7649 (1989); J. Vac. Sci. Technol. B, 5, 933 (1987).
- [11] Foxon, B.A. Joyce. Surf. Sci., 50, 434 (1975).
- [12] Y. Fukunishi, H. Nakatsuji. Surf. Sci., 291, 271 (1993).
- [13] Yu.G. Galitsyn, S.P. Moshchenko, A.S. Suranov. Phys. Low-Dim. Structur., 7/8, 81 (1998).
- [14] Yu.G. Galitsyn, V.G. Mansurov, I.I. Marahovka. Phys. Low-Dim. Structur., 5/6, 75 (1997); 7, 55 (1997).
- [15] Northrup, S. Froyen. Phys. Rev. B, 50, 2015 (1994).
- [16] D.J. Chadi. J. Vac. Sci. Technol. A, 5, 834 (1987).
- [17] T. Ohno. Phys. Rev. Lett., 70, 631 (1993).
- [18] V.P. Zhdanov. Elementary Physico-chemical Processes on Solid Surfaces (N.Y., Plenium, 1991).
- [19] W. Monch. *Semiconductor Surfaces and Interfaces* (Berlin, Springer Verlag, 1993) p. 366.

Редактор В.В. Чалдышев

Thermodynamic and kinetic aspects of reconstruction transitions on a (001) surface in GaAs

Yu.G. Galitsyn, V.G. Mansurov, S.P. Moshchenko, A.I. Toropov

Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract The kinetic and thermodynamic analysis of reconstruction transitions on a surface (001) GaAs is carried out. It is shown, that the transition between As-stabilized $(2 \times 4)\beta 2$ and Gastabilized $(4 \times 2)\beta 2$ structures under As₄ flux is a nonequilibrium phase transition and is carried out under steady-state conditions of adsorbed arsenic atoms on a surface. The transition is continuous and can be approximated by a three-parametric isotherm. It is shown that the formation of arsenic dimer from arsenic adatoms performs stabilization of $(2 \times 4)\beta$ structure. The stabilization energy value is estimated. The features of phase transitions occurring under As₄ flux and under conditions of the desorption of an amorphous arsenic are discussed.