Свойства точно компенсированных полупроводников

© С.Ж. Каражанов

Физико-технический институт, 700084 Ташкент, Узбекистан

(Получена 5 апреля 1999 г. Принята к печати 27 января 2000 г.)

Исследуются свойства точно компенсированных полупроводников и сообщается об эффекте резкого роста сопротивления на несколько порядков с ростом концентрации глубоких примесей. Показано, что аномальный рост времени жизни, фотопроводимости и удельного темнового сопротивления являются родственными эффектами. Показано, что полупроводник при этом становится чувствительным к изменениям температуры, интенсивности освещения в области зона-зонного и примесного поглощения, но эти эффекты инерционны. Максимальное значение времени жизни определяется зона-зонной оже-рекомбинацией, для которой предложено эмпирическое выражение. Приводится объяснение причины возникновения названных эффектов в рамках теории рекомбинации Шокли–Рида–Холла на примере кремния, легированного индием. Показано, что степень компенсации полупроводника можно определить из температурной зависимости равновесной концентрации носителей заряда.

1. Введение

Согласно традиционным представлениям, рост концентрации глубоких примесей приводит к росту скорости рекомбинации носителей заряда и, соответственно, к снижению их времени жизни, ограничивая тем самым функциональные возможности ряда полупроводниковых приборов (например, влияет на кпд солнечных элементов, темновой ток насыщения диодов и т.д.). Это представление коренным образом изменилось после открытия эффектов гигантского роста времен жизни электронов (τ_n) и дырок (τ_p) [1–4] и фотопроводимости [5]. Суть этих эффектов состоит в том, что с ростом концентрации рекомбинационных центров N_t в определенном узком интервале значений N_t, близких к концентрации мелкой легирующей примеси, времена жизни τ_n , τ_p и фотопроводимость возрастают на несколько порядков. Следовательно, скорость рекомбинации носителей заряда U уменьшается. При этом преобладающими могут оказаться другие рекомбинационные процессы, не через глубокие примесные уровни, в частности зона-зонная оже-рекомбинация, влияние которой в [1-5] не рассматривалось. Кроме того, результаты работ [1-5] справедливы только для низких уровней возбуждения, когда концентрация избыточных носителей много меньше, чем плотность основных носителей заряда.

Цель данной работы — исследование времен жизни электронов и дырок в полупроводниках с учетом оже-рекомбинации и при произвольном уровне возбуждения. Сообщается о возможности появления в этих условиях роста удельного темнового сопротивления и спада суммарной концентрации носителей заряда на несколько порядков, а также повышенной чувствительности полупроводника к вариациям интенсивности освещения в области зона-зонного и примесного поглощения.

2. Теоретическая модель

Рассмотрим кристаллический кремний, содержащий мелкие доноры с концентрацией N_d и глубокие акцепторы с концентрацией N_t , в качестве которых выступает примесь индия. Поскольку атом индия в кремнии является моноэнергетическим центром, скорость рекомбинации через него (U), а также соответствующие времена жизни электронов (τ_n^*) и дырок (τ_p^*) можно оценить в рамках теории рекомбинации Шокли–Рида–Холла:

$$U = \frac{N_t C_n C_p (np - n_i^2)}{C_n (n + n_1) + C_p (p + p_1)},$$
 (1)

$$\tau_n^* = \frac{\Delta n}{U},\tag{2}$$

$$\tau_p^* = \frac{\Delta p}{U},\tag{3}$$

где $n = n_0 + \Delta n$, $p = p_0 + \Delta p$ — полные концентрации, n_0, p_0 — равновесные, $\Delta n, \Delta p$ — избыточные концентрации электронов и дырок соответственно. C_n, C_p коэффициенты рекомбинации электронов и дырок, которые в соответствии с [6–8] оценивались по эмпирическим формулам

$$C_n = 6 \cdot 10^{-9} T^{-0.5}, \tag{4}$$

$$C_p = 8 \cdot 10^{-4} T^{-1.5}; \tag{5}$$

 $n_i = (N_c N_v) \exp[-E_g/2kT]$ — собственная концентрация носителей заряда, T — температура образца, $N_c = 3 \cdot 10^{19} (T/300)^{1.5}$, $N_v = 10^{19} \cdot (T/300)^{1.5}$ — плотности состояний электронов в зоне проводимости и дырок в валентной зоне; k — постоянная Больцмана; E_g — ширина запрещенной зоны, которая изменяется с температурой [9] и уровнем легирования [10] в соответствии с соотношением

$$E_g(T, N_d) \approx E_g(T = 0, N_d = 0) - 0.00024T - 0.148 (N_d \cdot 10^{-20})^{0.325}; \quad (6)$$

 $n_1 = N_c \exp[(\Delta E - E_g)/kT], p_1 = N_v \exp[-\Delta E/kT]$ — статистические множители Шокли–Рида, $\Delta E = 0.156$ эВ — глубина залегания энергетического уровня примеси индия, отсчитанная от края валентной зоны.

К настоящему времени можно считать установленным тот факт, что время жизни в монокристаллическом кремнии, практически не содержащем глубоких примесей, определяется зона-зонной оже-рекомбинацией [11]. В случае, когда концентрация глубоких примесей достаточно велика, времена жизни определяются двумя процессами рекомбинации — через моноэнергетические глубокие центры и зона-зонной оже-рекомбинацией, так что суммарные времена жизни τ_n , τ_p описываются выражениями [11]

$$\frac{1}{\tau_n} = \frac{1}{\tau_n^*} + \frac{1}{\tau_A},\tag{7}$$

$$\frac{1}{\tau_p} = \frac{1}{\tau_p^*} + \frac{1}{\tau_A},\tag{8}$$

где τ_A — время жизни, определяемое зона-зонной ожерекомбинацией. Используя экспериментальные результаты [11], можно легко вывести следующее эмпирическое выражение для τ_A :

$$\tau_A = 2.86 \cdot 10^{17} N_d^{-1.3} \exp(0.36 N_d^{-0.1} T), \qquad (9)$$

справедливое в интервале значений $N_d = 10^{16} - 10^{18} \, \mathrm{cm}^{-3}$ и $T = 100 - 500 \, \mathrm{K}.$

Равновесная и избыточная концентрации электронов и дырок определяются из уравнения для их темпов захвата и обратного теплового выброса с примесных уровней [1] и из условия полной электронейтральности, которое в нашем случае можно записать в виде

$$p + N_d = n + N_t^-,$$
 (10)

где $N_t^- = N_t - N_t^0$, а N_t^0 и N_t^- — концентрации нейтральных и заряженных примесей соответственно. Связь между величинами N_t , N_t^0 и N_t^- можно найти из соотношений $N_t^0 = N_t(1 - f)$ и $N_t^- = N_t f$, где f — степень заполнения глубокой примеси электронами, которая в соответствии с теорией рекомбинации Шокли– Рида–Холла имеет вид

$$f = \frac{C_n n + C_p p_1}{C_n (n+n_1) + C_p (p+p_1)}.$$
 (11)

Полные подвижности носителей заряда μ_n , μ_p определяются рассеянием на тепловых колебаниях решетки (μ_n^*, μ_p^*) , а также на нейтральных (μ_A) и заряженных (μ_I) примесях (см., например, [12]):

$$\frac{1}{\mu_n} = \frac{1}{\mu_n^*} + \frac{1}{\mu_A} + \frac{1}{\mu_I},$$
(12)

$$\frac{1}{\mu_p} = \frac{1}{\mu_p^*} + \frac{1}{\mu_A} + \frac{1}{\mu_I},$$
(13)

где

$$\mu_A = 1.56 \cdot 10^{20} (N_t^0)^{-1}, \qquad (14)$$

$$\mu_I = \frac{3.16 \cdot 10^{15} T^{1.5}}{N_t \ln(1 + 2 \cdot 10^4 T N_t^{-1/3})},$$
(15)

$$\mu_n^* = 1300 \left(300/T \right)^2, \tag{16}$$

$$\mu_n^* = 500 \left(\frac{300}{T} \right)^{2.7}.$$
 (17)

Удельное сопротивление определяется обычной формулой

$$\rho = (q\mu_n n + q\mu_p p)^{-1}, \tag{18}$$

где *q* — заряд электрона.

Проведем для обычного монокристаллического кремния численную оценку зависимости времен жизни основных и неосновных носителей заряда, подвижности и удельного сопротивления от концентрации индия в диапазоне $N_t = 10^{16} - 10^{18} \text{ см}^{-3}$ при различных значениях концентрации мелких доноров $N_d = 10^{16} - 10^{18} \text{ см}^{-3}$ в широком интервале температур T = 200 - 500 K.

3. Результаты и обсуждение

3.1. Времена жизни электронов и дырок

Времена жизни электронов (τ_n) и дырок (τ_p) рассчитываются по формулам (1)–(11), в условиях низкого уровня инжекции $\Delta n = 0.1n_i$ $(n_i - \text{собствен$ ная концентрация электронов), при <math>T = 260-500 К, $N_d = 10^{16}, 10^{17}$ и 10^{18} см⁻³. На рис. 1 приведена зависимость τ_n от N_t при T = 300 К для концентрации мелких доноров $N_d = 10^{17}$ см⁻³. Анализ полученных результатов показал, что τ_n и τ_p сначала убывают с ростом концентрации глубоких ловушек N_t при $N_t < N_d$,

Рис. 1. Зависимость времени жизни электронов от концентрации центров рекомбинации N_t при T = 300 K, $\Delta n = 0.1 n_i$ и уровне легирования $N_d = 10^{17}$ см⁻³ с учетом зона-зонной оже-рекомбинации (1) и без учета (2).

Физика и техника полупроводников, 2000, том 34, вып. 8

Рис. 2. Зависимость отношения максимального времени жизни электронов $\tau_{n \max}$ к времени жизни дырок $\tau_{p \max}$ от концентрации глубоких центров N_t при $\Delta n = 0.1n_i$ и концентрациях мелких доноров $N_d = 10^{16}$ (1), 10^{17} (2), 10^{18} см⁻³ (3).

а затем возрастают при $N_t \leq N_d$ (рис. 1). Максимальные значения $\tau_{n \max}$ и $\tau_{p \max}$ наблюдаются при $N_t = N_d$. Это означает, что данный эффект есть характерное свойство точно компенсированного полупроводника. Такой вывод согласуется с результатами работ [1–5].

На рис. 1 приведена только зависимость $\tau_n(N_t)$, поскольку зависимость $\tau_p(N_t)$ аналогична и качественно повторяет ход $\tau_n(N_t)$. При этом численные значения τ_n и τ_p могут сильно различаться (рис. 2). Нами исследована зависимость отношения $\tau_{n \max}/\tau_{p \max}$ от N_t при T = 300 К, $\Delta n = 0.1n_i$ и $N_d = 10^{16}$, 10^{17} и 10^{18} см⁻³ (рис. 2). Анализ рис. 2 показал, что при $N_d \leq 10^{17}$ см⁻³ во всем рассмотренном интервале значений N_d $\tau_n \approx \tau_p$, тогда как при $N_d > 10^{17}$ см⁻³ τ_n и τ_p существенно отличаются друг от друга. Следовательно, в таких случаях при теоретическом исследовании процессов транспорта через кремниевую структуру необходимо учесть различие времен жизни электронов и дырок.

Для объяснения причины этого явления (рис. 2) разделим τ_n^* (2) на τ_p^* (3):

$$\frac{\tau_n^*}{\tau_p^*} = \frac{\Delta n}{\Delta p}.$$
(19)

Это означает, что различие τ_n^* и τ_p^* обусловлено различием избыточных концентраций Δn и Δp , связанных с захватом на глубокие примеси. В этом нетрудно убедиться, анализируя связь между Δn и Δp ,

$$\Delta n \approx \Delta p \left[1 + \frac{N_t p_1}{(p+p_1)(p_0+p_1)} \right], \qquad (20)$$

полученную из условия электронейтральности. Анализ проведем для случая $p_0 \ll p_1$, когда $N_d > N_t$. Выражение

Физика и техника полупроводников, 2000, том 34, вып. 8

(20) упрощается, и при $\Delta p < p_1 \Delta n \approx \Delta p(1 + N_t/p_1)$. Отсюда следует, что при $N_t < p_1 \Delta n$ мало отличается от Δp и соответственно различие между τ_n^* и τ_p^* несущественно. Поскольку для примеси индия в кремнии $p_1 \approx 4.7 \cdot 10^{16} \text{ см}^{-3}$, то при $N_t = N_d = 10^{16} \text{ см}^{-3}$ существенного различия между τ_n^* и τ_p^* не следует ожидать, что и видно из рис. 2. Когда $N_t > p_1$, $N_d > p_1$, при $N_t < N_d$ различие между значениями Δn и Δp (20), а также τ_n^* и τ_p^* (19) возрастает, что объясняет результаты на рис. 2 для $N_t < N_d = 10^{17}$, 10^{18} см^{-3} .

При $N_t \ge N_d$ происходит резкий рост p_0 с ростом N_t , так что становится $p_0 > p_1$. Выражение (20) упрощается и принимает вид

$$\Delta n \approx \Delta p \left(1 + \frac{N_t p_1}{p_0^2} \right). \tag{21}$$

Поскольку для $N_t > N_d p_0$ возрастает с ростом N_t , то различие между Δn и Δp , τ_n^* и τ_p^* уменьшается, что объясняет результаты на рис. 2 для $N_t > N_d = 10^{17}$, 10^{18} см⁻³.

На рис. 2 нетрудно заметить резкий спад отношения $\tau_{n \max}/\tau_{p \max}$ до 1 при $N_t = N_d = 10^{17}$, 10^{18} см⁻³. Такой случай возможен, когда время жизни носителей заряда, связанного с глубокими примесями, становится больше определяемого зона-зонной оже-рекомбинацией. Тогда $\tau_n \approx \tau_p$ и определяется оже-рекомбинацией.

Отметим, что результаты, приведенные на рис. 1 и 2, согласуются с выводами [1–5] только качественно, но не количественно. Дело в том, что в [1–5] максимальные значения времен жизни $\tau_{n \max}$ и $\tau_{p \max}$ исследованы без учета зона-зонной оже-рекомбинации, которую мы включили в рассмотрение. Оказалось, что значения $\tau_{n \max}$

Рис. 3. Зависимость времени жизни электронов от концентрации центров рекомбинации N_t при T = 300 K, уровне легирования $N_d = 10^{17}$ см⁻³ и инжекции $\Delta n/n_i = 10^4$ (1), 10 (2), 0.1 (3).

 $au_{p \max}$, оцененные без учета au_A , в ~ 1000 раз больше найденных с учетом au_A (рис. 1).

Следует отметить, что исследование τ_n^* (2), τ_p^* (3) приведено в [1] для низких уровней возбуждения, $\Delta n, \Delta p \ll n_0, p_0,$ и подробно рассмотрены аналитически практически все наиболее важные случаи. В этой связи мы основное внимание уделили компьютерному моделированию зависимости τ_n (7) и τ_p (8) от концентрации избыточных носителей Δn , Δp для больших Δn и Δp при T = 300 K, $N_t, N_d = 10^{16} - 10^{18}$ см⁻³, когда зависимости τ_n и τ_p от N_t становятся нелинейными. Результаты в виде зависимости $au_n(N_t)$ представлены на рис. 3 для $N_d = 10^{17} \,\mathrm{cm}^{-3}$ и $\Delta n = 0.1 n_i$, n_i и $10^4 n_i$. Нетрудно заметить на рис. 3, что $\tau_{n \max}$ (и аналогично $\tau_{p\max}$) уменьшается с ростом уровня возбуждения. При $\Delta n \approx 10^4 n_i$ максимумы в зависимостях $\tau_n(N_t)$ и $\tau_p(N_t)$ почти исчезают. Анализ рис. 3 показывает, что $\tau_{n \max}$ и $au_{p\,\text{max}}$ очень чувствительны к изменениям интенсивности слабого оптического излучения. Эти моменты также необходимо учесть при исследовании транспортных свойств полупроводниковых структур.

3.2. Равновесная концентрация носителей заряда

В данном разделе дается интерпретация полученных зависимостей τ_n и τ_p от N_t , которые в отличие от трактовки [1–5] связаны со спадом суммы равновесной концентрации электронов и дырок $n_0 + p_0$. Анализ выражений (1)–(3) показал, что причиной полученной зависимости τ_n^* и τ_p^* от N_t является резкое уменьшение $n_0 + p_0$ на несколько порядков. Проведено исследование зависимости концентрации электронов и дырок от кон-

Рис. 4. Зависимость концентрации равновесных электронов (сплошная линия) и дырок (штриховая) от концентрации центров рекомбинации N_t при T = 300 K, $\Delta n = 0.1n_i$ и уровнях легирования $N_d = 10^{16}$ (I), 10^{17} (2), 10^{18} см⁻³ (3).

центрации центров рекомбинации, результаты которого представлены на рис. 4. Когда $N_d > N_t$, основными носителями заряда являются электроны и, соответственно, $p_0 \ll n_0 \approx N_d$. При этом n_0 слабо убывает с ростом N_t . Когда $N_t \leq N_d$, суммарная концетрация $n_0 + p_0$ резко убывает на несколько порядков и становится меньшей, чем при $N_t < N_d$ и $N_t > N_d$. При $N_t = N_d$ все свободные электроны, поставляемые мелкими донорами, захватываются глубокими акцепторами. Поскольку число рекомбинирующих свободных электронов и дырок мало, скорость рекомбинации через глубокие примеси N_t (1) мала, а связанное с ней время жизни велико (рис. 1).

Анализ рис. 4 показывает, что при $N_d < N_t$ основными носителями заряда становятся дырки, термически генерированные с уровня глубокой примеси, и происходит инверсия типа проводимости. В результате зависимость суммарной концентрации $n_0 + p_0$ от N_t проходит через минимум. Этот минимум исчезает, если уровень глубокого акцептора расположен выше середины запрещенной зоны. При этом концентрация основных носителей заряда резко убывает до величины, определяемой электронами, термически генерированными с уровня глубокой примеси, но никакого минимума на зависимости $n_0 + p_0$ от N_t наблюдаться не будет. Это означает, что результаты, представленные на рис. 1-4, существенно зависят от положения энергетического уровня глубокого акцептора в полупроводниках, легированных также мелкими донорами. Далее проведем анализ некоторых важных моментов.

а) Если энергетический уровень глубокого акцептора находится в нижней половине запрещенной зоны (например, примесь индия или таллия в кремнии), то $n_1 \ll p_1$. Соответственно сравнение времен жизни электронов τ_n^* и дырок τ_p^* при низких уровнях инжекции $\Delta n \approx \Delta p \ll p_i, N_d$ и при $N_d > N_t$

$$\tau^* \approx \tau_{n0} \frac{p_1}{n_0 + p_0},\tag{22}$$

при $N_d < N_t$

$$\tau^* \approx \tau_{n0} \left(1 + \frac{p_1}{p_0} \right), \tag{23}$$

при $N_d \approx N_t$

$$\tau^* \approx \tau_{n0} \frac{p_1}{2p_i} \tag{24}$$

показало, что время жизни при $N_d = N_t$ на несколько порядков больше, чем при $N_d > N_t$ и $N_d < N_t$, что объясняет результаты рис. 1. При этом скорость зоназонной оже-рекомбинации может стать доминирующим механизмом и определять максимальное значение времени жизни (рис. 1, сплошная кривая).

Как отмечено выше, выражение (24) получено для низких уровней инжекции, $\Delta n \approx \Delta p \leq n_i$. При больших Δn и Δp ($\Delta n \approx \Delta p > n_i$) оно имеет вид $\tau^* \approx \tau_{n0} 0.5 p_1 (p_0 + \Delta p)^{-1}$. Отсюда следует, что максимальное значение времени жизни убывает с ростом

Рис. 5. Зависимость равновесной концентрации свободных электронов (сплошная линия) и дырок (штриховая) от температуры при $N_d = N_t = 10^{16}$ (*I*), 10^{17} (*2*), 10^{18} см⁻³ (*3*) и при $N_d = 1.7 \cdot 10^{13}$ см⁻³, $N_t = 8.15 \cdot 10^{15}$ см⁻³ (*4*) [6–8].

уровня возбуждения, полностью исчезая при Δp , сравнимой с p_1 , что объясняет результаты, представленные на рис. 3.

б) Если уровень глубокого акцептора расположен в верхней половине запрещенной зоны, как это имеет место в кремнии с *E*-центром, то $n_1 \gg p_1$. Соответственно времена жизни электронов и дырок (2), (3) можно упростить следующим образом:

$$\tau_n^* \approx \tau_{p0} \frac{n+n_1}{n_0 \Delta p / \Delta n + p},\tag{25}$$

$$\tau_p^* \approx \tau_{p0} \frac{n+n_1}{n+p_0 \Delta n/\Delta p}.$$
(26)

При малых концентрациях глубокой примеси, $N_t < N_d$, в силу соотношений (19) и (20) избыточные концентрации и времена жизни электронов и дырок практически не отличаются друг от друга. Следовательно,

$$\tau_n^* \approx \tau_p^* \approx \tau_{p0} \frac{n+n_1}{n_0+p_0}.$$
(27)

С ростом N_t n_0 убывает (рис. 4) и в соответствии с соотношением (20) отношение $\Delta n/\Delta p$ возрастает. Следовательно, время жизни электронов (25) возрастает, а время жизни дырок (26) убывает. Когда $N_t > N_d$, равновесная концентрация дырок p_0 становится больше, чем p_1 , и возрастает с ростом N_t , что в соответствии с соотношением (20) приведет к убыванию отношение $\Delta n/\Delta p$. Следовательно, τ_n^* (25) убывает, а τ_p^* (26) может возрастать. Проведенное нами исследование времен жизни, связанное с *E*-центром в кремнии, подтверждает правильность данного результата. Далее нами исследована температурная зависимость n_0 и p_0 для трех случаев $N_t = N_d = 10^{16}, 10^{17}$ и 10^{18} см⁻³, а также для случая $N_d \neq N_t$, $N_d = 1.7 \cdot 10^{13}$ см⁻³, $N_t = 8.15 \cdot 10^{15}$ см⁻³ (рис. 5). При $N_t \neq N_d$ зависимость равновесной концентрации основных носителей заряда является монотонной функцией обратной величины температуры, тогда как при $N_t = N_d$ эта зависимость более сложная (рис. 5). Это отличие можно использовать как один из признаков экспериментального определения, точно ли компенсирован полупроводник или нет.

3.3. Удельное сопротивление

Известно, что убывание суммы концентрации носителей заряда $n_0 + p_0$ на несколько порядков (рис. 4) означает рост сопротивления полупроводника. Нами проведено исследование зависимости удельного сопротивления от концентрации ловушек N_t с учетом зависимости подвижностей μ_n , μ_p от температуры по формулам (12)–(17) при T = 300 K, $N_d = 10^{16}$, 10^{17} и 10^{18} см⁻³ и уровнях инжекции $\Delta n/n_i = 0.1$, 10^4 . Результаты приведены на рис. 6. Нетрудно видеть из рис. 6, что при $N_d < N_t$

Рис. 6. Зависимость удельного сопротивления от концентрации центров рекомбинации N_t при T = 300 K, уровнях легирования $N_d = 10^{16}$ (1), 10^{17} (2), 10^{18} см⁻³ (3) и инжекции $\Delta n/n_i = 0.1$ (штриховая линия), $\Delta n/n_i = 10^4$ (сплошная).

удельное сопротивление полупроводника ρ слабо возрастает с ростом Nt и резко возрастает на несколько порядков при $N_t = N_d$. Если $N_t < N_d$, то ρ слабо падает с ростом N_t . Эту особенность зависимости $\rho(N_t)$ также можно использовать для определения степени компенсации полупроводника. Проведенное исследование температурной зависимости удельного сопротивления показывает, что $\rho(T)$ повторяет ход зависимости $n_0(T) + p_0(T)$. При этом зависимости подвижностей μ_n и μ_p от концентрации нейтральной, заряженной примеси и температуры не вносят качественных изменений в ход $\rho(T)$. Температурный коэффициент максимального удельного сопротивления $Q_T \equiv
ho_{
m max}^{-1} d
ho_{
m max}/dT$ при T > 300 К сравним с соответствующим коэффициентом для терморезисторов, изготовленных из кремния, легированного марганцем [13].

3.4. Фоточувствительность

Анализируя (1)–(11), нетрудно убедиться в том, что большие значения времен жизни и темнового удельного сопротивления очень чувствительны к изменениям концентрации избыточных носителей, т.е. к интенсивности фотовозбуждения (рис. 3 и 6). Значение ρ_{\max} уменьшается с ростом Δn в интервале $n_i \leq \Delta n \leq N_d$ (рис. 6), причем эту область можно расширить, увеличивая уровень легирования мелкими донорами N_d . Нижний предел чувствительности также можно сдвинуть, уменьшая n_i . Как правило, это можно сделать с помощью внешнего давления или за счет использования полупроводника с более широкой запрещенной зоной.

Анализ формул (1)-(3) показывает, что максимальное значение времени жизни носителей заряда уменьшается с ростом концентрации избыточных носителей (рис. 3) в интервале $n_0 \le \Delta n \le p_1$. При этом, чем меньше глубина залегания энергетического уровня центра рекомбинации, тем больше p_1 и, соответственно, тем больше верхний предел чувствительности к вариациям Δn .

Нами проведены исследования зависимости $\tau_{n \max}$, $\tau_{p \max}$ и ρ_{\max} от интенсивности примесного освещения фотонами с энергией $h\nu \geq E_g - \Delta E$, осуществляющих фотостимулированный переход электронов с уровня примеси в зону проводимости. Для этой цели модифицированы выражения для скорости рекомбинации U (1) и времен жизни носителей заряда τ_n^* (2) и τ_p^* (3). При этом, аналогично [14], в (1) вместо ρ_1 и n_1 использованы следующие выражения:

$$n_1^* = n_1 + \tau_{n0} G_n, \tag{28}$$

$$p_1^* = p_1 + \tau_{p0} G_p, \tag{29}$$

 G_n и G_p — скорости генерации при освещении электронов в зону проводимости с примесного уровня и на примесный уровень из валентной зоны.

Проведенная нами оценка по формулам (28), (29) показала, что $p_1 \gg \tau_{p0}G_p$. Это означает преобладание термостимулированного электронного обмена

Рис. 7. Зависимость избыточной концентрации (*a*) и времени жизни (*b*) дырок от скорости генерации фотоносителей *G* в кремнии с концентрацией мелких доноров $N_d = 10^{16} \text{ см}^{-3}$, глубоких акцепторов $N_t = 10^{15}$ (*I*), 10^{16} (*2*), 10^{17} см^{-3} (*3*) при T = 300 K.

между уровнем глубокой примеси и валентной зоной над фотостимулированным обменом с участием этого же уровня. Кроме того, $n_1 \ll \tau_{no}G_n$. Соответственно скорость фотостимулированного электронного обмена глубокой примеси с зоной проводимости преобладает над скоростью термостимулированного обмена.

Исследование проведено в температурном интервале T = 100-500 K для уровней легирования $N_d = 10^{16}-10^{18} \text{ см}^{-3}$ и концентраций центров рекомбинации $N_t = 10^{16}-10^{18} \text{ см}^{-3}$. Анализ этих результатов показал высокую чувствительность максимальных значений времени жизни и удельного сопротивления к вариациям интенсивности освещения (ϕ) в области примесного поглощения с коэффициентами чувствительности $Q_{\tau} \equiv \tau_{n\max}^{-1} d\tau_{n\max}/d\phi \approx 12$ и $Q_{\rho} \equiv \rho_{n\,\text{max}}^{-1} d\rho_{n\,\text{max}} / d\phi \approx 10.$ Отметим, что значения Q_{τ} и Q_{ρ} одного порядка с соответствующими коэффициентами для кремниевых фоторезисторов, легированных марганцем [13].

Следует отметить, что результаты на рис. 1-6 получены при разных избыточных концентрациях неосновных носителей заряда Δp без конкретизации, каким способом они созданы. На самом же деле значение Δp можно варьировать с помощью инжекции из контактов или освещением. Далее изучена зависимость избыточной концентрации Δp и времени жизни τ_p от интенсивности освещения для кремния с концентрацией мелких доноров $N_d = 10^{16} \, \mathrm{cm}^{-3}$ при разных концентрациях глубокой примеси индия $N_t = 10^{15}, 10^{16}$ и 10¹⁷ см⁻³ при комнатной температуре. С этой целью решено кинетическое уравнение в стационарных условиях путем приравнивания скорости рекомбинации U (1) к скорости фотогенерации носителей заряда G (U = G) совместно с уравнением электронейтральности (10) методом итерации. Таким способом найдена концентрация дырок, а затем по формулам (1)-(11) их время жизни τ_p как функция скорости фотогенерации носителей заряда G. Результаты представлены на рис. 7. Нетрудно видеть из рис. 7, что избыточная концентрация и время жизни носителей заряда в точно компенсированном полупроводнике $(N_t = N_d)$ больше, чем в недокомпенсированном $(N_t < N_d)$ и перекомпенсированном ($N_t > N_d$) полупроводниках. Такой результат особенно четко проявляется при слабых освещениях, на несколько порядков меньших, чем при освещении от источника AM1 интенсивностью 100 мВт/см². Следовательно, полупроводник чувствителен к слабому освещению, что подтверждает правильность результатов данной работы и согласуется с результатами работы [5].

4. Заключение

Таким образом, темновое удельное сопротивление полупроводника может возрастать на несколько порядков с ростом концентрации глубокой примеси. Сравнение полученных в данной работе результатов с теоретическими результатами работ [1-5] показало, что аномальный рост удельного темнового сопротивления, времени жизни носителей заряда, фотопроводимости являются родственными эффектами и имеют место только в точно компенсированном полупроводнике. При этом полупроводник становится чувствительным к вариациям температуры, интенсивности при воздействии зона-зонным и примесным излучением. Причина возникновения эффектов связана с уменьшением на несколько порядков концентрации равновесных основных носителей заряда с ростом концентрации глубоких центров. Показано, что температурная зависимость равновесной концентрации точно компенсированного полупроводника, $N_d = N_t$, сильно отличается от аналогичной зависимости некомпенсированного полупроводника. Это отличие можно использовать как признак, характеризующий степень компенсации.

Необходимо подчеркнуть, что в условиях $N_d = N_t$ непременно начинают играть существенную роль процессы зона-зонной оже-рекомбинации, что уменьшает максимальное значение времени жизни на несколько порядков (ср. штриховую и сплошную кривые рис. 1).

Рассмотренный эффект существенно зависит от положения энергетического уровня глубокого акцептора ΔE . Если ΔE расположен в нижней половине запрещенной зоны, то зависимости времен жизни электронов τ_n и дырок τ_p от концентрации акцептора проходят через максимум. Если ΔE находится в верхней половине запрещенной зоны ближе к середине, то зависимость $\tau_n(N_t)$ может иметь максимум, а $\tau_p(N_t)$ проходит через минимум. Когда глубокий уровень расположен ближе к зоне проводимости, то $\tau_n(N_t)$ и $\tau_p(N_t)$ могут монотонно убывать с ростом N_t . Эти выводы справедливы для полупроводника с мелкими донорами и глубокими акцепторами при выполнении приведенных выше условий.

В заключение отметим, что высокая чувствительность полностью компенсированного полупроводника к внешним воздействиям широко используется на практике при изготовлении термо-, фото- и магниторезисторов [13], датчиков давления, температуры и магнитного поля [15].

Работа выполнена при финансовой поддержке Академии наук Республики Узбекистан. Автор благодарен DAAD (Germany) за финансирование его поездки в Institut für Solarenergieforschung (ISFH) Hameln, Emmerthal Germany. Считаю своим долгом поблагодарить проф. П.Т. Ландсберга (Southampton University, Southampton, UK), проф. А.Ю. Лейдерман за полезные обсуждения, а также Э.Н. Цой и А.С. Киракосян (Физикотехнический институт АН Узбекистана, Ташкент, Узбекистан) за техническую помощь и критические замечания.

Работа выполнена в рамках NATO Linkage Grants по контракту PST SLG 975758.

Список литературы

- [1] А.А. Другова, В.А. Холоднов. Письма ЖТФ, 18, 23 (1992).
- [2] В.А. Холоднов. ФТП, **30**(6), 1011 (1996).
- [3] A.A. Drugova, V.A. Kholodnov. Sol. St. Electron., 38(6), 1247 (1995).
- [4] В.А. Холоднов, П.С. Серебренников. Письма ЖТФ, 23(7), 39 (1997).
- [5] В.А. Холоднов. Письма ЖЭТФ, 67(9), 655 (1998).
- [6] A.G. Milnes. *Deep Impurities in Semiconductors* (J. Wiley & Sons, N.Y.–London–Sydney–Toronto, 1973).
- [7] J.S. Blakemore, C.E. Sarver. Phys. Rev., 173, 767 (1968).
- [8] G.K. Wertheim. Phys. Rev., **109**, 1086 (1958).
- [9] J.D. Arora, P.C. Mathur. J. Appl. Phys., 52(5), 3646 (1981).
- [10] D.J. Roulston, N.D. Arora, S.C. Chamberlain. IEEE Trans. Electron. Dev., 29(2), 284 (1982).

- [11] P.P. Altermatt, J. Schmidt, G. Heiser, A.G. Aberle. J. Appl. Phys., 82, 4938 (1997).
- [12] К.В. Шалимова. Физика полупроводников (М., Энергоатомиздат, 1985).
- [13] А.Н. Марченко. Управляемые полупроводниковые резисторы (М., Энергия, 1978).
- [14] M.J. Keevers, M.A. Green. J. Appl. Phys., 75(8), 4022 (1994).
- [15] К.С. Аюпов, Н.Ф. Зикриллаев. ДАН РУз, N 8–9, 41 (1992).

Редактор Л.В. Шаронова

Properties of precisely compensated semiconductors

S.Zh. Karazhanov

Physicotechnical Institute, 700084 Tashkent, Uzbekistan