Новая аллотропная форма углерода $[C_{28}]_n$ на основе фуллерена C_{20} и кубического кластера C_8 и ее аналоги для элементов Si и Ge: компьютерное моделирование

© А.Л. Чистяков, И.В. Станкевич, А.А. Корлюков

Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук, 119991 Москва, Россия

(Поступила в Редакцию 27 апреля 2004 г.)

Предложена структура новой аллотропной формы углерода $[C_{28}]_n$ с простой кубической решеткой и пространственной группой симметрии Pm 3. Геометрические параметры повторяющегося звена такого гипотетического кристалла определены предварительно из расчета методом DFT-PBE кластера $C_8@(C_{20})_8$ и полиэдрической углеводородной молекулы $C_8@(C_{20}H_{13})_8$, в которых углеродные каркасы C_{20} додекаэдрической формы расположены по вершинам куба, а центры кубических кластеров C_8 совпадают с центром кластера $C_8@(C_{20})_8$ или молекулы $C_8@(C_{20}H_{13})_8$ соответственно. Энергия диссоциации кластера $C_8@(C_{20})_8$ на кубический кластер C_8 и 8 додекаэдрических кластеров C_{20} составляет 1482 kcal/mol, а энергия каждой связи C_8-C_{20} равна 74.2 kcal/mol. Уточнение структуры кристалла $[C_{28}]_n$ проведено методом DFT-PBE96/FLAPW с оптимизацией геометрии. Расчет показал, что этот кристалл является диэлектриком с запрещенной зоной 3.3 eV. Параметр *a* кристаллической решетки равен 5.6 Å, плотность — 3.0 g/cm³. Обсуждается возможный подход к конструированию гипотетической аллотропной формы $[C_{28}]_n$ исходя из молекул $C_{20}(CH_3)_8$ симметрии T_h .

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 02-07-90169 и 03-03-32214) и Министерства науки и образования.

1. Введение

Принципиальная возможность существования бесконечного числа кристаллических модификаций углерода впервые была теоретически обоснована в обзоре [1], который явился обобщением ряда ранее опубликованных работ по конструированию структуры и прогнозированию свойств новых форм углерода периодического строения [2–7]. Из результатов работы [1] (см. также [8–10]) следовало, что различные формы углерода могут состоять из изолированных углеродных цепочек, сшитых углеродных цепочек, полиэдрических кластеров углерода (фуллеренов), фрагментов графитовых слоев, свернутых в цилиндрические структуры (тубуленов) и др. Эти теоретические выводы были подтверждены экспериментально синтезом полиэдрических кластеров углерода, их полимерных форм, тубулярных форм графита и др. [9].

В полимерных формах фуллеренов мономеры связаны между собой четырехчленными циклами, образующими в результате реакции [2+2]циклоприсоединения по двум двойным связям соседних фуллеренов. В фуллерене С₆₀ можно выделить шесть таких связей, центры которых расположены в вершинах октаэдра. Поэтому фуллерены С₆₀ способны образовывать квазиодномерные, квазидвумерные и трехмерные структуры. В частности, возможно образование структур с простой кубической решеткой.

Фуллерен C_{20} синтезирован в 2000 г. [11] чисто химическим способом, а его производные — углеводородные молекулы $C_{20}H_{20}$ и $C_{20}H_{18}Me_2$ с углеродным додекаэд-

рическим каркасом [12,13] — были получены задолго до открытия фуллеренов. В фуллерене C_{20} додекаэдрической формы, как и в фуллерене C_{60} , можно формально также выделить шесть связей С-С, центры которых лежат в вершинах октаэдра. На рис. 1 атомы этих связей помечены более светлыми кружками. Поэтому фуллерен C_{20} аналогично фуллерену C_{60} можно также использовать для конструирования квазиодномерных, квазидвухмерных и трехмерных структур, в которых два соседних кластера также связаны четырехчленными циклами.

Этот принцип моделирования структуры новых форм углерода с простой кубической решеткой был использован в работах [14,15]. В [14] построены две структуры

Рис. 2. Гипотетическая структура кристалла $[C_{20}]_n$ (1).

 $[C_{20}]_n$ (**1** и **1**' на рис. 2)¹ с простой кубической решеткой. Первая, расчет которой выполнен при неполной оптимизации геометрии (зафиксирован параметр ячейки) методом LDA, содержит наряду с насыщенными атомами углерода по восемь атомов углерода на фуллерен с формальной *sp*²-гибридизацией. Эти атомы можно рассматривать как радикальные центры, расположенные по вершинам куба. Расчет второй структуры выполнен при полной оптимизации геометрии и привел к разрыву тех связей фуллерена, которые участвовали в формировании четырехугольных циклов, связывающих два соседних фуллерена. В результате оказалось, что все атомы кристалла 1' имеют формальную sp^2 -гибридизацию. Поэтому такой кристалл должен обладать металлическими свойствами. Теоретическое обоснование возможности существования еще двух кристаллических структур с более плотной упаковкой на основе фуллерена С₂₀ (орторомбической и тетрагональной упаковок) дано в работе [15]. В этих структурах только по четыре атома каждого мономера являются трехкоординационными, а остальные — четырехкоординационными. В настоящей работе предлагается модификация $[C_{28}]_n$ (2) кристаллической формы углерода 1, которая состоит только из насыщенных атомов углерода.

2. Методика расчетов

Расчеты локальных минимумов энергий на поверхностях потенциальной энергии исследуемых кластеров проведены при полной оптимизации геометрии методом DFT с использованием обменно-корреляционного потенциала Perdew-Burke-Ernzerhof (DFT-PBE) [16] в двухэкспонентных базисах DZ по программе PRIRODA [17]. При оптимизации геометрии использовался алгоритм BFGS [18]. Полные энергии указанных выше систем оценивались также и с учетом нулевых ядерных колебаний. Характер найденных стационарных точек проверялся на основании анализа спектра матрицы Гесса. Расчет кристалла 2 проведен методом FLAPW (Full Potential Linearized Augement Plane Waves) [19] с использованием программы WIEN2K [20] при полной оптимизации геометрии. Эффекты электронной корреляции учтены в рамках теории функционала плотности (функционал РВЕ96). Использовавшийся для расчетов базисный набор включал 7524 линеаризованных плоских волн и 9 гауссовых функций, радиус маффин-тин сферы атома углерода составлял 0.72 Å, независимая часть зоны Бриллюэна аппроксимирована 76 к-точками.

3. Результаты и обсуждение

3.1. Кристалл $[C_{28}]_n$. Подробный анализ структуры 1 показал, что в таком кристалле содержатся полости диаметра 5.76 Å. Оказалось, что в них могут быть размещены кластеры углерода C_8 кубической формы. При этом каждый атом кластера C_8 связан ковалентной связью с одним из восьми додекаэдрических кластеров, расположенных по вершинам куба, образующего совместно с одним из фуллеренов C_{20} элементарную ячейку в структуре 1. Такая кристаллическая модификация углерода 2 состава $[C_{28}]_n$ (рис. 3) состоит только из насыщен-

Рис. 3. Структура кристаллов $[X_{28}]_n(X = C, Si, Ge);$ атомы фрагментов X_8 отличаются более светлой окраской.

¹ Структура 1' на рис. 2 не приведена, так как она отличается от структуры 1 только тем, что связи в четырехчленных циклах, принадлежащие фуллеренам, разорваны. Все атомы структуры 1' имеют sp^2 гибридизацию.

Рис. 4. Структуры гипотетических систем: 2а — кластер $C_8\underline{@}[C_{20}]_8$, 2b — углеводородная молекула $C_8\underline{@}[C_{20}H_{13}]_8$, 2c — структура повторяющегося звена $C_{20}-C_8$ кристалла 2.

ных четырехкоординационных атомов углерода.² Для оценки возможности существования кристаллической модификации углерода **2** сначала нами были проведены DFT-PBE расчеты с полной оптимизацией геометрии кластера $C_8\underline{@}(C_{20})_8$ (**2**а на рис. 4), состоящего из восьми додекаэдрических фуллеренов C_{20} , которые расположены по вершинам описанного выше куба и связаны между собой четырехчленными циклами, и кубического кластера C_8 , расположенного внутри этого куба. При этом мы ввели символ $\underline{@}$, чтобы отличить обозначения рассматриваемых систем от символики $\underline{@}$, используемой для эндоэдральных комплексов фуллеренов.

Расчет кластера С8 привел к локальному минимуму со структурой кубической симметрии. Вычисленная энергия диссоциации кластера 2а на кубический кластер С8 и восемь кластеров С20 составила 1482 kcal/mol, а энергия связи кластера С8 с кластером $[C_{20}]_8$ (1a) равна 593 kcal/mol. Таким образом, внедрение кубического кластера С8 в полость кластера 1а энергетически выгодно. Каждая связь С₂₀-С₈ имеет длину 1.456 Å и на нее приходится энергия $[E(C_8) + E(1a) - E(2a)]/8 = 74.2 \text{ kcal/mol}$ (yepes E(X)) обозначена энергия частицы Х). Образование связей С20-С8 сопровождается удлинением связей в кубе (от 1.482 до 1.533 Å) и прилегающих к ним связей во фрагменте C₂₀ (от 1.508 до 1.572 Å). Однако, связи фуллерена С₂₀, по которым происходит [2+2]циклоприсоединение, укорачиваются (с 1.603 до 1.592 Å). Энергия атомизации на один атом кластера 2а равна 212.4 kcal/mol, т.е, больше, чем в кластере 1а (210.6 kcal/mol) и фуллерене C₂₀ (205.0 kcal/mol), но меньше, чем в фуллерене С₆₀ (223.0 kcal/mol). Длины связей С-С в четырехчленных циклах, связывающих два смежных фуллерена, равны 1.58 Å (связь между атомами одного и того же фуллерена) и 1.59 Å (связь между монометрами). Длины связей С₈-С₂₀ между атомами кубического кластера и соответствующего додекаэдра равны 1.48 Å.

Поскольку кристалл 2 состоит только из *sp*³-гибридизированных атомов, для более точного определения геометрических параметров повторяющегося звена кристаллической решетки к ненасыщенным (трехкоординационным) атомам углерода, расположенным на внешней части кластера 2а, присоединялись атомы водорода с образованием углеводородной молекулы С₈@(С₂₀H₁₃)₈ (2b на рис. 4). Геометрические параметры этой молекулы приведены в табл. 1. Они свидетельствуют о том, что в сравнении с кластером 2а длины связей С8-С20 уменьшаются, а длины связей С20-С20 увеличиваются. Кроме того, уменьшаются длины связей СЗ-С4 (рис. 4), по которым происходит [2+2]циклоприсоединение. Радикал $(C_{20}H_{13})_8$ (1b) также стабилен и энергия связи C₈-C₂₀ в молекуле 2b (вычисленная как $[E(C_8) + E(1\mathbf{b}) - E(2\mathbf{b})]/8)$ составляет 82.1 kcal/mol.

 $^{^2}$ Предлагамая новая аллотропная форма названа кубефул
20 (cubeful20), поскольку она построена из кубических фрагментов
 C_8 и фуллеренов $C_{20}.$

Длины связей во фрагменте C ₂₀ :	$C1-C2=C(C_{20})-C(C_8)=1.456$ Å
6 связей (C3-C4), по которым происходит связывание мономеров, равны 1.565 Å,	$C3-C3'=C(C_{20})-C(C_{20})=1.535 \text{ Å}$
длины остальных 24 связей (C2–C4) — 1.553 Å.	$Tx = Ty = Tz = 5.60 \text{\AA}$
Длиины связей (C1-C1') во фрагменте C8:	
все 12 связей — 1.596 Å.	

Примечание. Нумерация атомов приведена на структуре 2b (рис. 4), *Tx*, *Ty*, *Tz* — длины вектора трансляции вдоль соответствующей оси координат.

Структура повторяющегося звена $C_{20}-C_8~(2c)$ кристалла **2** приведена на рис. 4.

Чтобы оценить более точно структуру ковалентного кристалла **2** и его электропроводящие свойства, проведены расчеты методом FLAPW с оптимизацией геометрии. Анализ полученных геометрических параметров кристалла **2** показал, что они близки к параметрам, приведенным в табл. 1. Симметрия его кристаллической структуры описывается пространственной группой *Pm*3,

Рис. 5. Полная плотность электронных состояний, определенная методом DFT-PBE96/FLAPW (Full Potential Linearized Augement Plane Waves).

Рис. 6. Парциальная плотность электронных состояний от p-электронов атомов, фрагмент C₈.

принадлежащей к кубической сингонии (a = 5.7 Å). Общее число атомов в ячейке 28, независимых атомов — три (C1, C2 и C3, см. 2с на рис. 4), плотность упаковки кристалла составляет 3.0 g/cm^3 . Из рассчитанной плотности состояний (рис. 5) следует, что в электронном спектре кристалла имеется запрещенная зона ширины 3.3 eV, что свидетельствует о диэлектрических свойствах кристалла 2. Повышенная плотность в верхней части валентной зоны обусловлена *p*-электронами атомов, входящих во фрагмент C₈ кубической формы (рис. 6).

3.2. Возможный подход к конструированию структуры сиbeful20, квазиодномерных и квазидвумерных полимеров на основе производных $C_{20}(CR_3)_8$ фуллерена C_{20} . В настоящее время получено много различных производных фуллерена C_{20} , в том числе η^2 -комплексы переходных металлов [21,12,13]. По-видимому, можно синтезировать и молекулы типа $C_{20}(CR_3)_8$ симметрии T_h , в которых метильные группы или их производные CR_3 присоединены к атомам фуллерена C_{20} , расположенным по вершинам куба (на рис. 1 они выделены более темным цветом).

Предложен качественный подход, позволяющий наглядно промоделировать один из возможных процессов образования и роста квазиодномерных, квазидвумерных и трехмерных структур, исходя из молекул $C_{20}(CR_3)_8$. Для простоты расчетов рассмотрим случай R=H. Оказалось, что молекула $C_{20}(CH_3)_8$ (рис. 7) стабильна, а ее основное состояние синглетно. Связи C–C, параллельные граням указанного куба, пригодны для образования четырехчленных циклов, связывающих соседние фуллерены в результате реакций [2+2]циклоприсоединения. Выберем декартову систему координат с началом в центре симметрии додекаэдра и осями координат, проходящими через середины указанных связей (рис. 7).

При подходящей ориентации двух молекул **3**, приближающихся друг к другу вдоль оси x, в результате их взаимодействия может образоваться каркасная молекула **4** симметрии D_{2h} (рис. 8). Левая и правая части этой молекулы связаны шестью связями С–С, пересекающими плоскость (x, y). Две из них C20–C21 и C9–C22 можно интерпретировать как результат реакции [2+2]циклоприсоединения. Остальные четыре связи C55–C56, C50–C53, C52–C51 и C49–C54 образуются в результате взаимодействия метильных групп.

Рис. 7. Структура молекулы 3 симметрии Т_h.

Рис. 8. Структура молекулы $H_{32}C_{56}$ (4) симметрии D_{2h} .

Это взаимодействие приводит к формированию четырех мостиковых связей -СН2-СН2- (либо -СН=СН-) и вытеснению соответственно восьми или шестнадцати радикалов Н, которые могут образовывать четыре или восемь молекул H₂. В дальнейшем будем предполагать, что при определенных условиях (высокая температура, давление, наличие катализатора) реализуется только второй случай. Правая и левая части боковой поверхности молекулы 4, форма которой приближенно описывается в виде параллелепипеда, имеют такую же атомную структру, как и левая (правая) части боковой поверхности молекулы 3. Поэтому при подходящей ориентации молекул 3 и 4, приближающихся друг к другу вдоль оси х, в результате их взаимодействия может образоваться каркасная молекула $(C_{20})_3(CH_3)_8(C_2H_4)_4$ симметрии D_{2h} с осью симметрии, совпадающей с осью x. При этом должно выделиться восемь молекул Н2. Описанная выше процедура роста молекулы вдоль оси х может быть продолжена неограниченно. В результате приходим к квазиодномерной периодической структуре [С₂₄H₄]_n с трансляционной симметрией вдоль оси х. По нашим оценкам, длина вектора трансляции ≈ 5.64 Å.

Рассмотрим другие схемы сборки полимерных структур на основе молекулы 3, приводящие либо к углеводородным квазидвумерным периодическим структурам, либо к кристаллической модификации углерода **2**.

При подходящей ориентации двух молекул 4, приближающихся друг к другу вдоль оси у (в этом случае удобно расположить начало координат в центре симметрии молекулы 4), в результате их взаимодействия может образоваться молекула 5 (рис. 9) — производное олигомера (С20)4 с расположением мономеров по вершинам квадрата. В этой системе два фрагмента молекулы 4 связаны двумя четырехчленными циклами С16-С17-С75-С74 и С32-С34-С91-С89, образованными в результате реакции [2+2]циклоприсоединения и двумя четырехчленными циклами циклобутанового типа, возникающими в результате взаимодействия мостиковых фрагментов -СН=СН-. При этом вытесняется восемь молекул H₂. Аналогичным образом к молекуле 5 может быть присоединена еще одна молекула 4 и т.д. Полученные таким образом олигомеры и полимеры могут служить основой для сборки квазидвумерных периодических структур [С26H2]_n с квадратной решеткой и параметром решетки ≈ 5.66 Å.

Поясним теперь, каким образом может быть собрана структура кристалла 2. Молекула 5 имеет форму сплюснутого прямоугольного параллелепипеда, в основании которого лежит квадрат. Атомная структура верхней и нижней частей боковых поверхностей молекулы 5 состоит из четырех метильных групп, четырех связей -C-C- из sp^3 -атомов углерода, четырех мостиковых групп -CH=CH- и одного четырехчленного цикла циклобутанового типа. При подходящей ориентации двух молекул 5, приближающихся друг к другу вдоль оси *z*, в результате их взаимодействия может образоваться молекула 6 (рис. 10). При этом должно происходить вытеснение двенадцати молекул водорода и образова-

Рис. 9. Структура молекулы 5 симметрии D_{2h} .

Рис. 10. Структура молекулы 6 симметрии D_{2h} .

кластер образуется в результате взаимодействия двух четырехчленных циклов циклобутанового типа. Описанная выше процедура может быть продолжена неограниченно. В результате образуется квазиодномерная система трансляционно инвариантная относительно оси *z*. Комбинируя сборку молекулярных систем на основе молекулы **3** по различным направлениям координатных осей, в результате получим структуру кристалла **2**.

Чтобы оценить энергетику начальных стадий описанных выше процедур, были рассчитаны теплоты следующих реакций:

$$\mathbf{3} + \mathbf{3} \to \mathbf{4} + 8\mathrm{H}_2,\tag{1}$$

$$\mathbf{4} + \mathbf{4} \to \mathbf{5} + 8\mathrm{H}_2,\tag{2}$$

$$\mathbf{5} + \mathbf{5} \to \mathbf{6} + 12\mathrm{H}_2. \tag{3}$$

Найдено, что первая реакция эндотермична и должна протекать с поглощением тепла ($\approx 102 \text{ kcal/mol}$). Реакции (2) и (3) экзотермичны и должны протекать с выделением 18 и 57 kcal/mol соответственно.

Отметим, что наличие в кристалле **2** кубических кластеров позволяет сохранить фуллереновую структуру кластеров С₂₀. Это видно из сравнения результатов

Рис. 11. Структура молекулы 7 симметрии *D*_{2*h*}.

ние 24 связей С–С (всех тех, которые пересекают экваториальную плоскость образованной молекулы): восемь (типа C9–C42) — между мономерами, четыре — типа C161–C168 (они завершают образование центрального фрагмента C₈ кубической формы), четыре двойные связи типа C200=C206, C214=C215 и восемь ординарных связей во фрагментах HC–CH (например, C212–C213). В молекуле **6** содержится кубический кластер C₈, каждый атом которого связан с одним из додекаэдров. Этот

Рис. 12. Структура молекулы 8 симметрии D_{2h} и повторяющегося звена 8а кристалла 1'.

Физика твердого тела, 2005, том 47, вып. 1

Таблица 2	2. Г	еометрические	параметры	повторяющихся	звеньев	кристаллов	$[X_{28}]_n$	на	основе	расчетов	молекул	$X_8@(X_2)$	20H13)8
(см. нумера	цию	о на рис. 4).											

Элемент Х		Основные	параметры	Дополнительные				
	1-2	2-3	1-2-3	а	3-3'	1 - 1'	3-4	
С	1.454	1.566	110.2	5.695-5.732	1.614	1.533	1.561-1.562	
Si	2.307 - 2.308	2.386-2.388	107.9-108.1	8.802-8.808	2.420-2.443	2.370 - 2.371	2.400 - 2.402	
Ge	2.412	2.505	108.1-108.2	9.226-9.245	2.568 - 2.570	2.489-2.490	2.513-2.514	

Примечание. Длины связей в Å, углы в град.

расчетов молекулы 7 (рис. 11) и олигомера (С20)7 (8 на рис. 12). В молекуле 7 восемь фрагментов H_4C_{28} , каждый из которых содержит кубический кластер С₈, препятствует разрыву С-С связей, участвующих в [2+2]циклоприсоединении. В олигомере 8 такие связи разрываются. Центральный фрагмент С₂₀ (8а на рис. 12) уже не является фуллереном и его геометрия может служить оценкой периодического звена кристалла 1'.

Таким образом, описанный выше способ сборки квазиодномерных, квазидвумерных и трехмерных периодических структур на основе октаметилдодекаэдрана $C_{20}(CH_3)_8$ и его производных $C_{20}(CR_3)_8$ в принципе возможен. Однако для его реализации требуются специальные условия (высокая температура, давление, возможно, катализатор). Отметим, что условия синтеза могут существенно зависеть от природы заместителей R и прочности связи C-R. Например, целесообразно взять R=Br, поскольку связь C-Br относительно слабая. Подобный подход был использован при синтезе кластера С20, который получили из молекул C₂₀HBr₁₃ и C₂₀HBr₉ в результате их дебромирования и дегидрирования [21].

4. Заключение

В заключение отметим, что аллотропные формы, аналогичные кристаллу 2, должны существовать и для других элементов четвертой группы (например, Si и Ge). Для определения геометрии повторяющихся звеньев таких кристаллов (рис. 3) проведены расчеты кластеров $X_8(a)(X_{20})_8$ и полиэдрических молекул $X_8@(X_{20}H_{13})_8(X = Si, Ge)$ (структуры их аналогичны структурам 2а и 2b на рис. 4). Найденные оценки геометрических параметров кристаллов [Si₂₈]_n и [Ge₂₈]_n приведены в табл. 2. Рассчитанные плотности этих кристаллов равны 1.92 и 4.33 g/cm³ соответственно. Для исследования электронного строения таких систем в приближении PBE96/FLAPW нужны большие вычислительные ресурсы, которыми мы пока не располагаем.

Результаты работы представлены на 2-ой Международной конференции "Углерод: фундаментальные проблемы науки, материаловедение, технология" [22].

Выражаем благодарность Л.А. Чернозатонскому за плодотворное обсуждение результатов.

Список литературы

- [1] И.В. Станкевич, М.В. Никеров, Д.А. Бочвар. Успехи химии 53, 7, 1101 (1984).
- [2] A.T. Balaban, C.C. Rentia, E. Ciupitu. Rev. Roum. Chem. 13, 2, 231 (1968).
- [3] Д.А. Бочвар, Е.Г. Гальперн. Докл. АН СССР 209, 610 (1973).
- [4] М.В. Никеров, Д.А. Бочвар, И.В. Станкевич. ЖСХ 23, 177 (1982).
- [5] В.В. Коршак, Ю.П. Кудрявцев, А.М. Сладков. Вестн. АН CCCP 1, 70 (1978).
- [6] В.М. Мельниченко, Ю.И. Никулин, А.М. Сладков. Докл. AH CCCP 267, 1150 (1982).
- [7] R. Hoffmann, T. Hughbanks, M. Kertesz, P.H. Bird. J. Am. Chem. Soc. 105, 4831 (1983).
- F. Diedrich, Y. Rubin. Ang. Chem. Int. Ed. Engk. 39, 9, 1101 (1992).
- [9] В.И. Соколов, И.В. Станкевич. Успехи химии 62, 5, 455 (1993).
- [10] I.V. Stankevich. In: Chem. Rev. / Ed. by M. Volpin. (1994). Vol. 20. P. 1.
- [11] H. Prinzbach, A. Weller, P. Landerberger, F. Wahl, J. Wörth, L.T. Scott, M.Gelmont, D. Olevaro, B.V. Issendorff. Nature 407.60 (2000).
- [12] L.A. Paquette, D.W. Balogh, R.Usha, D. Koutz. Science. 211, 575 (1981).
- [13] L.A. Paquette, R.J. Ternansky, D.W. Balogh, G.J. Kentgen. J. Amer. Chem. Soc. 105, 5446 (1983).
- [14] Y. Miyamoto, M. Saito. Phys. Rev. B 63, 161 401 (R) (2001).
- [15] S. Okada, Y. Miyamoto, M. Saito. Phys. Rev. B 64, 245405 (2001).
- [16] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 11, 3865 (1996).
- [17] D.N. Laikov. Chem. Phys. Lett. 281, 151 (1997).
- [18] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipies in C. Cambridge University Press, Cambridge, MA (1992).
- [19] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luits. Wien2k Usergiude. Vienna University of Technology, Vienna (2001).
- [20] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luits. Wien2k. Vienna University of Technology, Vienna (2001).
- [21] T. Obwald, M. Keller, G. Janiak, M. Kolm, H. Prinzbach, Tetrahedron Lett. 41, 1631 (2000).
- [22] А.Л. Чистяков, И.В. Станкевич. Тез. 2-ой Междунар. конф. "Углерод: фундаментальные проблемы науки, материаловедение, технология". МГУ, М. (2003). С. 221.