Исследование методом комбинационного рассеяния света расщепления поперечных оптических фононов в сверхрешетках GaAs/AIAs, выращенных на поверхностях (311)

© В.А. Володин[¶], М.Д. Ефремов, В.В. Преображенский, Б.Р. Семягин, В.В. Болотов*, В.А. Сачков* Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

* Институт сенсорной микроэлектроники Сибирского отделения Российской академии наук, 644077 Омск, Россия

(Получена 21 декабря 1998 г. Принята к печати 19 мая 1999 г.)

Сверхрешетки $GaAs_n/AlAs_m$, выращенные молекулярно-лучевой эпитаксией на поверхностях GaAs (311) А и (311)В, были исследованы методом спектроскопии комбинационного рассеяния света. Вид тензора комбинационного рассеяния света позволял, используя различные геометрии рассеяния, раздельно наблюдать моды TO_y и TO_x , где оси у и x — направления смещения атомов, направленые вдоль и поперек фасеток на поверхности (311)А. Обнаружено расщепление мод $TO1_x$ и $TO1_y$ в сверхрешетках, выращенных на фасетированной поверхности (311)А GaAs. Наблюдалось усиление расщепления для сверхрешеток со средней толщиной слоев GaAs 6 монослоев и менее. Так как для сверхрешеток, выращенных в тех же условиях на поверхности (311)В, расщепления не наблюдалось, эффект расщепления можно связать с формированием квантовых проволок GaAs на фасетированной поверхности (311)А.

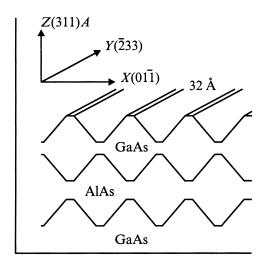
1. Введение

Одной из актуальных задач современной физики твердого тела является создание квантовых проволок и точек с размерами порядка нескольких межатомных расстояний и исследование их свойств. В силу ограничений современной литографии для получения нанометровых объектов воспроизводимой формы и размеров в планарном направлении большой интерес вызывает использование свойств самоорганизующихся систем [1]. В этом плане использование эффекта фасетирования высокоиндексных поверхностей GaAs представляет собой одно из перспективных направлений. Эффект фасетирования поверхности (311)A GaAs (возникновение на ней периодического массива микрофасеток вдоль направления $(\bar{2}33)$ с периодом 32 Å в направлении $(01\bar{1})$) был обнаружен в начале 90-х годов [2–4] и подтвержден многими авторами [5-8]. Высота микрофасеток, по данным различных авторов, составляет либо 10.2 Å (6 монослоев в направлении (311)) [2–4], либо 3.4 Å (2 монослоя) [6–8]. До настоящего времени в этом вопросе остается много неясного, некоторые авторы даже отрицают эффект высокопериодической рифлености поверхности (311)А GaAs [9].

Создание периодического массива квантовых проволок при смыкании микрофасеток в процессе гетероэпитаксиального роста сверхтонких слоев методом молекулярнолучевой эпитаксии (МЛЭ) [2,3] предполагает появление в этой системе анизотропии свойств электронной и фононной подсистем. Особенности транспорта носителей в подобных структурах были изучены как теоретически, так и экспериментально, в частности в них был обнаружен эффект анизотропии проводимости вдоль и

поперек направления фасеток, сохранявшийся вплоть до температуры 500 К [10]. Свойства фононов в сверхрешетках (СР) на поверхности (311)А исследовались в работах [11-19]. Однако детальное исследование было проведено в основном для относительно толстых слоев GaAs и AlAs (12 монослоев и более) [10–15], тогда как наиболее яркое проявление влияния рифления гетерограниц на фононные свойства следует ожидать именно в случае, когда толщины слоев сравнимы с высотой микрофасеток. Одной из немногих работ, в которой исследовалось комбинационное рассеяние (КР) света в CP GaAs / AlAs (311) A с малыми толщинами слоев GaAs (8 и 5 монослоев), была работа Армеллеса с соавт. [16]. Авторы утверждали, что, несмотря на то что согласно теоретическим расчетам рифление гетерограниц должно приводить к существенным изменениям спектров КР света, в экспериментальных спектрах не обнаружено особенностей, связанных с рифлением. Влияние вносимой рифлением поверхности (311) A GaAs латеральной симметрии на фононные свойства (латеральная свертка фононов и т.д.) было исследовано ранее также только для СР с толстыми слоями GaAs [14].

В данной работе были исследованы свойства поперечных оптических (TO) фононов, локализованных в тонких гофрированных слоях GaAs и в квантовых проволоках GaAs, выращенных на поверхности (311)A. Анализ частот локализованных TO-фононов может дополнить имеющиеся литературные данные о структуре микрофасеток на поверхности (311)A GaAs. Используя правила отбора для KP света по симметрии, были исследованы локализованные TO-моды с поляризацией вдоль и поперек фасеток на поверхности (311)A GaAs с целью обнаружения расщепления этих мод в случае их планарной локализации, связанной с формировани-


[¶] E-mail: volodin@isp.nsc.ru

ем массива фононно-изолированных квантовых проволок GaAs. Также были исследованы фононные свойства CP GaAs/AlAs на поверхности (311)В, так как сравнение расщепления *TO*-мод в случае CP на поверхностях (311)А и (311)В может выделить влияние рифлености гетерограницы GaAs—AlAs (311)А на фононные свойства полученных объектов.

2. Эксперимент

Исследуемые структуры выращивались методом МЛЭ на полуизолирующих подложках GaAs (311) А и В. Угловая разориентация подложек от направления (311) была менее 15'. Вследствие отсутствия центра инверсии в кристаллах полупроводников типа A^{III}B^V поверхности (311) А и В не эквивалентны. Поверхности (311) А и В определялись, используя анизотропию химического травления. На рифленой поверхности (311)А были выращены латеральные сверхрешетки (ЛСР), которые, согласно модели роста, экспериментально подтвержденной в работах [2,3], представляют собой периодически повторяющиеся модулированные по толщине (гофрированные) слои GaAs и AlAs. Период модуляции соответствует периоду микрофасеток и составляет 32 Å, амплитуда модуляции соответствует глубине микрофасеток. Структура получаемых массивов квантовых проволок в случае, если рост происходит согласно механизму, определенному в работах [2,3], показана на рис. 1.

Серия СР $GaAs_n/AlAs_m$, где n и m — толщины соответствующих слоев в монослоях (толщина 1 монослоя в направлении (311) — 1.7 Å), была выращена на поверхностях (311) А и В с параметрами, показанными в таблице. Толщины слоев контролировались по времени роста. Рост осуществлялся в условиях, необходимых для реконструкции поверхностей GaAs и AlAs в высокопериодический массив микрофасеток. Более подробно

Рис. 1. Сечение ЛСР GaAs/AlAs на фасетированной поверхности (311)A в случае реализации модели роста с формированием квантовых проволок.

Параметры и спецификация сверхрешеток GaAs_n / AlAs_m

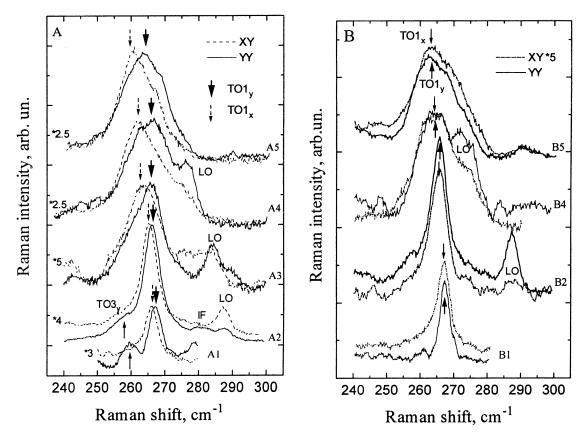
		Ориентация подложки		Средняя толщина GaAs,	Средняя толщина AlAs,	Количество
_		(311)A	(311)B	в монослоях п	в монослоях т	периодов
	Nο	A1	B1	12	12	100
		A2	B2	10	8	100
		A3		6	8	100
		A4	B4	5	12	200
		A5	B5	4	8	200

условия роста описаны в работах [10,17]. Для чистоты эксперимента СР на различных поверхностях выращивались одновременно и, следовательно, в полностью аналогичных условиях. Количество периодов L (см. таблицу) менялось от 100 до 200. Через каждые 10 периодов СР содержали слои AlAs толщиной 50 Å. Все СР выращивались на буферных слоях GaAs и AlAs (0.1 мкм) и были покрыты сверху тонким защитным слоем GaAs в 40 Å.

Спектры комбинационного рассеяния (КР) света регистрировались в геометрии квазиобратного рассеяния при комнатной температуре с использованием спектрометра на базе двойного монохроматра ДФС-52 и линии аргонового лазера 488 нм. Для реализации различных поляризационных геометрий использовались вращающая плоскость поляризации света пластина $\lambda/2$, призма Глана и деполяризующий клин.

3. Результаты и обсуждение

На рис. 2 приведены спектры КР света на локализованных в слоях GaAs TO модах для СР, выращенных на поверхностях (311)А и В с различной средней толщиной слоев GaAs в разных геометриях рассеяния. Необходимо пояснить, вдоль каких кристаллографических осей направлены оси X, Y и Z и чем был обусловлен выбор поляризационных геометрий рассеяния.


Тензоры КР света для продольных оптических (LO)- и TO-фононов различной поляризации в случае обратного рассеяния от поверхности (311) имеют вид [13]

$$LO - \frac{1}{\sqrt{11}} \begin{pmatrix} 0 & d & d \\ d & 0 & 3d \\ d & 3d & 0 \end{pmatrix};$$

$$TO_x - \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -d & d \\ -d & 0 & 0 \\ d & 0 & 0 \end{pmatrix};$$

$$TO_y - \frac{1}{\sqrt{22}} \begin{pmatrix} 0 & 3d & 3d \\ 3d & 0 & -2d \\ 3d & -2d & 0 \end{pmatrix}$$

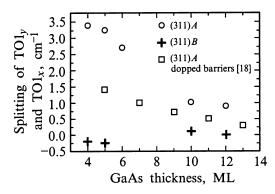

Моды TO_x и TO_y соответствуют поляризации фононов с направлением смещения атомов вдоль направлений X (01 $\bar{1}$) и Y ($\bar{2}33$), т.е. поперек и вдоль фасеток на поверхности (311)А соответственно (см. рис. 1), ось

Рис. 2. Спектры КР света в геометриях $Z(YY)\bar{Z}$ (сплошная линия) и $Z(YX)\bar{Z}$ (штриховая линия, для наглядности сравнения интенсивность умножена в 2.5–5 раз) для образцов, выращенных на поверхностях: A: (311)A — образцы A1–A5 (толщины слоев GaAs 12, 10, 6, 5 и 4 монослоя); B: (311)B — образцы B1, B2, B4 и B5 (толщины слоев GaAs 12, 10, 5 и 4 монослоя)

Z направлена вдоль направления (311). Согласно правилам отбора по симметрии, интенсивность КР света пропорциональна квадрату произведения вектора поляризации падающего света на тензор КР света и на вектор поляризации рассеянного света. Векторы, вдоль которых был поляризован либо падающий, либо рассеянный свет, были $X = \frac{1}{\sqrt{2}}(01\bar{1})$ и $Y = \frac{1}{\sqrt{22}}(\bar{2}33)$. Таким образом, в геометрии $Z(YY)\bar{Z}$ (где вне скобок — направление импульса, а в скобках — направление поляризации падающего и рассеянного фотона) интенсивность КР света на моде TO_y пропорциональна $\left(\frac{54}{11\sqrt{22}}\right) d^2 (\approx 1.09d^2)$, а на моде TO_x рассеяние запрещено, в геометрии же $Z(YX)\bar{Z}$ интенсивность КР света на моде $TO_{\rm r}$ пропорциональна $\frac{2}{11}d^{2}$ ($\approx 0.18d^{2}$), а на моде TO_{y} рассеяние запрещено [13]. Таким образом, эти две различные моды наблюдаются в двух различных геометриях и поэтому могут быть с большой точностью разрешены по положению соответствующих им пиков КР света в спектре. В геометрии $Z(YY)\bar{Z}$ могут проявляться также LO-моды.

На рис. 2,A явно видно расщепление основных локализованных мод $TO1_y$ и $TO1_x$, причем с уменьшением средней толщины слоев GaAs эффект расщепления возрастает. В спектрах образцов A1 и A2 (толщина слоев GaAs 12 и 10 монослоев) видны также локализованные TO-моды более высокого (3-го) порядка. Видно также, что ширина пиков в спектрах образцов А3-А5 возросла, что может быть связано с размытием гетерограниц AlAs/GaAs на масштабах порядка одного монослоя. Особенности в районе 280 см⁻¹, наблюдаемые в спектре образца A2 в геометрии $Z(YY)\bar{Z}$, совпадают по положению с интерфейсными (IF) фононами GaAs-типа. Оценка положения IF-фонона была сделана для плоских сверхрешеток GaAs / AlAs с соотношением толщин слоев GaAs и AlAs 10/8. Более точный расчет положения ІГ-фонона требует учета рифлености гетерограниц, так что идентификация пика при 280 cм⁻¹ как IF-фонона носит предположительный характер. Следует лишь подчеркнуть, что наблюдение IF-мод в нерезонансных условиях может быть следствием рифленых гетерограниц, как результат возникновения неопределенности волнового вектора q_{par} (параллельного слоям ЛСР), которая обратно пропорциональна латеральному периоду ЛСР $\Delta q_{\rm par} pprox rac{2\pi}{d}$. Для гладких СР IF-фононы не видны в спектрах КР света вследствие малости $q_{\rm par}$. В геометрии обратного рассеяния они наблюдались только в резонансных условиях. Необходимо отметить немонотонную зависимость соотношения интенсивностей пиков КР све-

Рис. 3. Разница между частотами мод $TO1_y$ и $TO1_x$ в зависимости от средней толщины слоев GaAs в CP, выращенных на поверхностях (311)A и (311)B. Квадратами показаны результаты из работы [18].

та на модах TO_v и TO_x , что видно из рис. 2, A. Так, для ЛСР с относительно толстыми слоями GaAs (образец А1, 12 монослоев) и для ЛСР с самыми тонкими слоями GaAs (А4 и А5, 5 и 4 монослоев соответственно) различаются всего в 2.5-3 раза. Как было отмечено выше из правил отбора по симметрии, для объемного GaAs эти пики должны различаться по интенсивности примерно в 6 раз, что и наблюдалось при КР света от подложки GaAs (311)А, а также приблизительно выполнялось для ЛСР с толщинами слоев GaAs 10 и 6 монослоев (образцы А2 и A3, рис. 2,A), а также для CP, выращенных на поверхностях (311)В (рис. 2, В). По-видимому, изменение соотношения интенсивностей КР света на модах TO_{ν} и TO_x для ЛСР связано как с перемешиванием различных фононных мод, так и с изменением соотношения между суммой проекций поляризуемых связей Ga-As на направления вдоль и поперек фасеток вследствие модуляции толщины слоя вдоль одного из направлений — $(01\overline{1})$.

Для того чтобы убедиться, что эффект расщепления $TO1_y$ и $TO1_x$ связан именно с рифлением поверхности (311)А GaAs, были выращены и исследованы CP на поверхности (311)В с теми же самыми средними толщинами слоев. Спектры KP света образцов B1, B2, B4 и B5 в тех же геометриях, что и для образцов, выращенных на поверхности (311)А, показаны на рис. 2, B. Видно, что в этом случае расщепления TO-мод практически не происходит. Интенсивности KP света на модах $TO1_y$ и $TO1_x$ различаются примерно в 4.5—6 раз для всех образцов, выращенных на поверхности (311)В, что отличается от данных соотношений для CP на поверхности (311)А (рис. 2, A) и ближе к соотношению для объемного GaAs.

Положение пиков, соответствующих КР света на модах $TO1_y$ и $TO1_x$, было определено для всех СР с помощью аппроксимации экспериментальных спектров кривыми Лоренца с минимизацией среднеквадратичного отклонения. Точность определения соответствующей частоты колебаний составляла примерно ± 0.2 см $^{-1}$. Данные о расщеплении частот мод TO1 различной поляризации для всех исследуемых образцов приведены на

рис. 3. Видно, что эффект расщепления двух различных мод TO1 возрастает с уменьшением средней толщины слоев GaAs для CP, выращенных на поверхности (311)A, причем частота моды $TO1_{v}$, в которой атомы колеблются вдоль квантовых проволок, выше, чем частота моды $TO1_{x}$ (атомы смещаются поперек квантовых проволок). Можно предположить, что данный эффект обусловлен именно влиянием рифления гетерограницы, а не смешиванием ТО-мод с продольными модами вследствие пониженной симметрии направления (311), так как в этом случае, согласно расчетам без учета рифления, этот эффект присутствует лишь для мод с волновыми векторами, начиная примерно с середины зоны Бриллюэна и более [11]. Необходимо отметить, что для образцов А5, А4 и А3 средняя толщина слоев GaAs была почти равна, либо даже меньше, чем высота микрофасеток в одной из моделей реконструкции гетерограницы (311)А GaAs/AlAs (6 монослоев, [2–4]). Для этих образцов, как видно из рис. 3, эффект расщепления мод TO_x и TO_{ν} резко усиливался, что может быть косвенным подтверждением фасетирования поверхности (311)А с высотой фасеток 6 монослоев и формирования на ней квантовых проволок GaAs. По результатам расчетов других авторов [19], сделанных для образца со средней толщиной слоев GaAs в 8 монослоев с рифленостью гетерограниц 2 монослоя, расщепления ТО-мод не наблюдалось, тогда как в нашем эксперименте обнаружено значительное расщепление ТО-мод уже для образца А1 с 10 монослоями GaAs.

Необходимо подчеркнуть, что эффект расщепления по частоте мод TO_y и TO_x наблюдался только от ЛСР, выращенных на поверхности (311)А. Расщепления ТО-мод для объемного GaAs с поверхностью (311)А в эксперименте не наблюдалось, так как для длинноволновых колебаний, разрешенных в КР света от объемного GaAs, эти моды вырождены [13]. В случае СР на поверхности (311)В расщепление было либо весьма незначительным, либо частота моды $TO1_{\nu}$ была даже несколько меньше, чем частота моды $TO1_r$ (рис. 2, B). Это может служить доказательством того, что эффект расщепления обусловлен реконструкцией поверхности (311)А и формированием структуры слоев GaAs по типу квантовых проволок, а не вызван смешиванием TO- и LO-мод вследствие низкой симметрии направления (311). Расчеты частот локализованных фононов были выполнены с учетом кулоновского взаимодействия атомов катионов и анионов. В СР с гладкими гетерограницами (без учета рифления) рассчитанная величина расщепления фононных мод $TO1_{y}$ и $TO1_{x}$ была максимальна для СР с самым тонким слоем GaAs (GaAs₄AlAs₈) и не превышала $1.5 \,\mathrm{cm}^{-1}$.

На рис. 3 приведены также данные из работы [18] (квадраты), в которой исследовались образцы с толщиной AlAs-барьеров 27 Å (часть барьеров была легирована), причем, так как СР были достаточно тонкими (число периодов составляло 75), это создавало определенные трудности в точном определении положения пиков изза паразитного сигнала от подложки и относительно толстого защитного слоя (250 Å GaAs). По-видимому, вклад паразитного сигнала несколько уменьшил реальное расщепление мод, наблюдаемое в работе [18].

4. Выводы

Таким образом, наблюдалось расщепление мод $TO1_y$ и $TO1_x$ в CP, выращенных на фасетированной поверхности GaAs (311)A, тогда как в CP, выращенных в аналогичных условиях на поверхности (311)B, расщепление практически не наблюдалось. Это позволяет сделать вывод о том, что различие частот TO-фононов с различной поляризацией атомных смещений обусловлено влиянием структурной анизотропии в CP GaAs/AlAs (311)A, а именно формированием периодического массива квантовых проволок на данной поверхности. Зависимость расщепления TO-мод от толщины слоев GaAs косвенно подтверждает, что высота микрофасеток на поверхности GaAs (311)A составляет 6 монослоев.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 97-02-18422 и 99-02-16668), а также Сибирского отделения РАН (грант конкурса молодежных проектов по физикотехническим наукам № 16).

Авторы признательны Ученому совету ИФП СО РАН за поддержку данных исследований, выразившуюся в присуждении В.А. Володину стипендии ИФП СО РАН для молодых ученых.

Список литературы

- [1] Н.Н. Леденцов, В.М. Устинов, В.А. Щукин, П.С. Копьев, Ж.И. Алфёров, Д. Бимберг. ФТП, **32**, 385 (1998).
- [2] R. Nötzel, N.N. Ledentsov, L. Dawerits, M. Hohenstein, K. Ploog. Phys. Rev. Lett., 67, 3812 (1991).
- [3] R. Nötzel, N.N. Ledentsov, L. Dawerits, K. Ploog, M. Hohenstein. Phys. Rev. B, **45**, 3507 (1992).
- [4] R. Nötzel, N.N. Ledentsov, L. Dawerits, K. Ploog. Surf. Sci., 267, 209 (1992).
- [5] Paulo V. Santos, A. Cantarero, M. Cardona, R. Nötzel, K. Ploog. Phys. Rev. B, 52, 1970 (1995).
- [6] M. Wassermeier, J. Sudijono, M.D. Johnson, K.T. Leung, B.G. Orr, L. Dawerits, K. Ploog. J. Cryst. Growth, 150, 425 (1995).
- [7] M. Wassermeier, J. Sudijono, M.D. Johnson, K.T. Leung, B.G. Orr, L. Dawerits, K. Ploog. Phys. Rev. B, 51, 14721 (1995).
- [8] D. Lüerßen, A. Dinger, H. Kalt, W. Braun, R. Nötzel, K. Ploog, J. Tummler, J. Geurts. Phys. Rev. B, 57, 1631 (1998).
- [9] P. Moriarty, Y.-R. Ma, A.W. Dunn, P.H. Beton, M. Henini. Phys. Rev. B, 55, 15397 (1997).
- [10] В.Я. Принц, И.А. Панаев, В.В. Преображенский, Б.Р. Семягин. Письма ЖЭТФ, 60, 209 (1994).
- [11] М.В. Белоусов, В.Ю. Давыдов, И.Э. Козин, П.С. Копьев, Н.Н. Леденцов. Письма ЖЭТФ, 57, 112 (1993).
- [12] Z.V. Popovic, E. Richter, J. Spitzer, M. Cardona, A.J. Shields, R. Nötzel, K. Ploog. Phys. Rev. B, 49, 7577 (1994).

- [13] A.J. Shields, Z.V. Popovic, M. Cardona, J. Spitzer, R. Nötzel, K. Ploog. Phys. Rev. B, 49, 7584 (1994).
- [14] Z.V. Popovic, M.B. Vukmirovic, Y.S. Raptis, E. Anastassakis, R. Nötzel, K. Ploog. Phys. Rev. B, 52, 5789 (1995).
- [15] P. Castrillo, G. Armelles, L. Gonzalez, P.S. Dominguez, L. Colombo. Phys. Rev. B, 51, 1647 (1995).
- [16] G. Armelles, P. Castrillo, P.D. Wang, C.M. Sotomayor Torres, N.N. Ledentsov, N.A. Bert. Sol. St. Commun., 94, 613 (1995).
- [17] В.А. Володин, М.Д. Ефремов, В.Я. Принц, В.В. Преображенский, Б.Р. Семягин. Письма ЖЭТФ, 63, 942 (1996).
- [18] В.А. Володин, М.Д. Ефремов, В.Я. Принц, В.В. Преображенский, Б.Р. Семягин, А.О. Говоров. Письма ЖЭТФ, 66, 45 (1997).
- [19] P. Castrillo, G. Armelles, J. Barbolla. Sol. St. Electron., 40, 175 (1996).

Редактор В.В. Чалдышев

644077 Omsk, Russia

Raman study of TO phonon splitting in GaAs/AlAs superlattices grown on (311) surfaces

V.A. Volodin, M.D. Efremov, V.V. Preobrazhenskii, B.R. Semyagin, V.V. Bolotov*, V.A. Sachkov*

Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia * Institute of Sensor Microelectronics, Siberian Branch of Russian Academy of Sciences,

Abstract The GaAs_n/AlAs_m superlattices (SLs) grown by MBE technique on GaAs (311)A and (311)B surfaces were studied by Raman spectroscopy technique. The use of Raman selection rules makes it possible to observe TO_x and TO_y modes, where x and y are the transversal and the parallel directions to facets on GaAs (311)A surface, respectively. The splitting of the TO_y was observed for (311)A SLs. Splitting augmentation has been observed for (311)A superlattices, the average thickness of GaAs layers being 6 monolayers and thinner. Since the splitting has not been found in superlattices grown on (311)B surface, the splitting effect is supposedly caused by corrugation of GaAs/AlAs (311)A interfaces and formation of GaAs quantum wires.