Особенности электроактивации ²⁸Si в монокристаллическом и эпитаксиальном GaAs при радиационном отжиге

© В.М. Ардышев, М.В. Ардышев*, С.С. Хлудков*

Томский политехнический университет, 634004 Томск, Россия * Сибирский физико-технический институт при Томском государственном университете, 634050 Томск, Россия

(Получена 29 марта 1999 г. Принята к печати 8 июня 1999 г.)

Методами вольт-фарадных характеристик и Ван-дер-Пау исследованы свойства ионно-легированных слоев как в монокристаллическом, так и в эпитаксиальном GaAs:Si после быстрого термического отжига (при $T = 825, 870, 905^{\circ}$ C, в течение 12 с). Показано, что в отличие от термического отжига (800°C, 30 мин) наблюдается диффузионное перераспределение кремния в глубь GaAs для материалов обоих типов, причем значения коэффициента диффузии в монокристаллическом материале больше, чем в эпитаксиальном. Анализ температурной зависимости подвижности электронов в ионно-легированных слоях после быстрого термического отжига свидетельствует о существенно меньшей концентрации дефектов, ограничивающих подвижность, по сравнению с результатами термического отжига в течение 30 мин.

Введение

В работах [1–3] показано, что при радиационном отжиге GaAs в процессах диффузии и электроактивации примеси существенную роль играют нетермические эффекты. Протекание вышеуказанных процессов во многом определяется дефектностью исходного материала.

В этой связи целью работы является исследование поведения ²⁸Si, имплантированного в монокристаллический и эпитаксиальный GaAs, в зависимости от температуры при быстром термическом отжиге (БТО) с защитой имплантированной поверхности пленкой диэлектрика, а также исследование остаточной дефектности в ионнолегированных слоях (ИЛС), ограничивающей подвижность электронов.

Методика эксперимента

Исследования выполнены на образцах нелегированного, ориентированного в плоскости (100) монокристаллического GaAs с концентрацией хрома $N_{\rm Cr} < 10^{16} \,{\rm cm}^{-3}$, плотностью дислокаций $N_{\rm D} \leq 5 \cdot 10^4 \,{\rm cm}^{-2}$, удельным сопротивлением $\rho > 10^7 \,{\rm Om} \cdot {\rm cm}$, а также эпитаксиального GaAs, выращенного методом газофазной эпитаксии с концентрацией фоновой примеси $N_{\rm res} < 10^{14} \,{\rm cm}^{-3}$, толщиной 5 \div 7 мкм.

После обработки пластин в травителе $H_2SO_4: H_2O_2: H_2O = 1:1:10$ проводили имплантацию ионов ²⁸Si с энергией $E_1 = 50$ кэB, дозой $F_1 = 6.25 \times 10^{12}$ см⁻², а затем с энергией $E_2 = 75$ кэB, дозой $F_2 = 1.875 \cdot 10^{12}$ см⁻². При имплантации принимали меры для исключения осевого и плоскостного каналирования [3]. БТО под пленкой диоксида кремния, легированного самарием, осуществляли в установке

"Импульс-5" при температурах T = 825, 870 и 905°C в течение времени t = 12 с в потоке азота с точкой росы не более -65°С. Контрольные образцы отжигали термически в печи при $T = 800^{\circ}$ С в течение t = 30 мин. После отжига, удаления диэлектрика и очистки поверхности пластин формировали барьеры Шоттки размером $100 \times 100 \,\mathrm{mkm^2}$ с металлизацией на основе сплава AuGe+14%Ni, на которых затем вольт-фарадным методом измеряли профили концентрации электронов. По методу Ван-дер-Пау проводили измерения температурной зависимости холловской подвижности электронов в диапазоне температур 80 ÷ 400 К.

Таблица 1. Значения диффузионных параметров и степени электрической активации кремния в монокристаллическом и эпитаксиальном GaAs для быстрого термического отжига

Тип материала, вид отжига, температура, время отжига	σ ² , 10 ⁻¹¹ см ²	$n_{\rm max},$ $10^{17} {\rm cm}^{-3}$	D, $10^{-15} \text{ cm}^2 \cdot \text{c}^{-1}$	η
Монокристалл, ТО 800°С 30 мин	2.10	6.10	2.0	0.860
Монокристалл,	1.86	4.25	144.5	0.564
БТО, 825°С, 12 с Монокристалл.	2.50	4.20	411.2	0.646
БТО, 870°С, 12 с				
Монокристалл, БТО 905°С 12 с	3.70	3.80	911.2	0.711
Эпитаксиальный,	1.70	4.58	73.7	0.581
БТО, 825°С, 12 с	2.00	4.80	202.8	0.661
БТО, 870°С, 12 с	2.00	4.00	202.8	0.001
Эпитаксиальный,	2.60	4.65	452.8	0.730
ью, 905°C, 12 с				

Примечание. ТО — термический отжиг, БТО — быстрый термический отжиг.

Рис. 1. Профили концентрации внедренного кремния: l -расчет при параметрах $E_1 = 50$ куВ, $F_1 = 6.25 \cdot 10^{12}$ см⁻² и $E_2 = 75$ куВ, $F_2 = 1.88 \cdot 10^{12}$ см⁻²; профили концентрации электронов n(x), полученные после быстрого термического отжига в течение t = 12 с монокристаллического GaAs при температуре отжига T_{ann} , °C: 2 - 825, 3 - 870, 4 - 905, и профиль n(x), полученный при термическом отжиге в течение t = 30 мин при $T_{ann} = 800$ °C (5).

Экспериментальные результаты и их обсуждение

На рис. 1 и 2 представлены экспериментальные профили концентрации электронов n(x), полученные после БТО монокристаллического и эпитаксиального GaAs соответственно, а также расчетный профиль внедренного кремния. На рис. 1 приведен также профиль электронов, полученный после ТО в течение 30 мин. Расчетный профиль построен с помощью определенных методом масс-спектроскопии на вторичных ионах (ВИМС) [4] первых двух моментов распределения R_p и ΔR_p (проецированный пробег ионов и среднеквадратичный разброс пробегов), соответствующих реализованному режиму имплантации.

Предполагая, что экспериментальный профиль может быть описан выражением вида [5]

$$n(x) = n_{\max} \exp\left[-\frac{(x-R_p)^2}{2\sigma^2}\right],$$
 (1)

Физика и техника полупроводников, 2000, том 34, вып. 1

где
$$n_{\max} = \eta F/(2\pi)^{1/2}\sigma$$
,

$$\sigma^2 = \Delta R_p^2 + 2Dt$$

 η — степень электроактивации кремния, D — коэффициент диффузии, F — доза имплантации ²⁸Si, t — время отжига, с помощью экспериментальных данных были найдены значения σ^2 , n_{max} , D и η (табл. 1).

Из рис. 1 и 2 видно, что с ростом температуры БТО наблюдается "уширение" профилей концентрации электронов в материалах обоих типов (рис. 1 и 2, кривые 2-4) относительно расчетного (рис. 1 и 2, кривые 1). Профили, полученные после БТО, имеют "гладкий" фронт, в то время как после ТО (рис. 1, кривая 5) имеет место дисперсия градиента концентрации электронов по глубине — фронт "изломан". Коэффициент диффузии (табл. 1) в монокристаллическом GaAs приблизительно в 2 раза больше, а степень активации несколько меньше, чем в эпитаксиальном для каждой из температур. Значения D для БТО в среднем на 2 порядка больше, чем для ТО. Наблюдается также аномально высокая степень активации ²⁸Si для TO, что, возможно, связано с вкладом в значение η электронов, образованных при раскомпенсации фоновых доноров исходного материала при ТО.

На рис. З представлены зависимости коэффициента диффузии и степени электроактивации ²⁸Si от обратной

Рис. 2. То же, что и на рис. 1 (за исключением зависимости 5), но кривые 2–4 получены для эпитаксиального слоя GaAs после отжига в тех же условиях.

Рис. 3. Зависимости коэффициента диффузии D(1, 2) и степени электрической активации $\eta(1', 2')$ кремния от обратной температуры для монокристаллического (1, 1') и эпитаксиального (2, 2') GaAs.

температуры для монокристаллического и эпитаксиального GaAs. Принимая, что D и η описываются выражениями

$$D = D_0 \exp\left[-\frac{E_{AD}}{kT}\right] \tag{2}$$

И

$$\eta \sim \exp\left[-\frac{E_{A\eta}}{kT}\right],$$
 (3)

из тангенса угла наклона прямых $\ln D(1/T)$ и $\ln \eta(1/T)$ были оценены значения E_{AD} и $E_{A\eta}$ — энергий активации процессов диффузии и электроактивации ²⁸Si соответственно, а также предэкспоненциальный множитель D_0 . Для монокристаллического GaAs были получены значения: $E_{AD} = (2.58 \pm 0.05)$ эB, $E_{A\eta} = (0.32 \pm 0.01)$ эB, $D_0 \cong 9.5 \cdot 10^{-2}$ см² · с⁻¹. Для эпитаксиального: $E_{AD} = (2.55 \pm 0.05)$ эB, $E_{A\eta} = (0.32 \pm 0.01)$ эB, $D_0 \cong 3.6 \cdot 10^{-2}$ см² · с⁻¹.

Видно, что значения E_{AD} и $E_{A\eta}$ практически совпадают для материалов обоих типов, однако множитель D_0 для монокристаллического GaAs почти в 3 раза больше, чем для эпитаксиального. Полученные значения E_{AD} и $E_{A\eta}$ меньше соответствующих величин при TO (3.3 эВ [6] и 0.5 эВ [7] соответственно). Таким образом, при быстром термическом отжиге монокристаллического и эпитаксиального GaAs наблюдается снижение высоты потенциальных барьеров для диффузии и активации кремния по сравнению с медленным термическим процессом.

На рис. 4 представлена экспериментальная зависимость холловской подвижности электронов от температуры в монокристаллическом GaAs после TO (кривая I) и результирующая расчетная зависимость $\mu(T)$ (кривая 2), которая определялась из соотношения

$$\mu_{\Sigma} = \left[\frac{1}{\mu_{\rm PO}} + \frac{1}{\mu_{\rm AC}} + \frac{1}{\mu_{\rm PIEZO}} + \frac{1}{\mu_{\rm ION}} + \frac{1}{\mu_{\rm W}}\right]^{-1}, \quad (4)$$

где μ_{PO} — подвижность, ограниченная рассеянием на полярных оптических фононах, μ_{AC} — на акустических фононах, μ_{PIEZO} — подвижность, ограниченная пьезоэлектрическим рассеянием, μ_{ION} — рассеянием на ионизованной примеси и μ_W — рассеянием на дополнительных скоплениях дефектов. Компоненты подвижности, ограниченной решеточным рассеянием, рассчитывались, как в работе [8], а подвижности, ограниченной рассеянием на ионизованной примеси и дефектах — так же, как в [9]. Величину μ_W определяли по модели Вайсберга [10]

$$\mu_W = \frac{e}{N_S S \sqrt{2m_n KT}},\tag{5}$$

где N_S и S — концентрация и сечение рассеяния на скоплениях дефектов соответственно, m_n — эффективная масса электрона. Предполагая, что внутренний радиус скоплений дефектов существенно меньше радиуса экранирования, на рис. 4 (кривая 3) приведена зависимость $\mu(T)$, рассчитанная по (5). Видно, что наибольший вклад в подвижность дополнительные скопления дефектов оказывают в области высоких температур.

Наилучшее совпадение экспериментальных и расчетных данных для $T > 150 \,\mathrm{K}$ (см. рис. 4, кривые I

Рис. 4. Температурные зависимости: 1 -холловской подвижности электронов в монокристаллическом GaAs после термического отжига; 2 - подвижности, рассчитанной с помощью выражения (4); 3 - подвижности, рассчитанной с помощью выражения (5); штриховая прямая $4 - \mu \sim T^{1/2}$.

Физика и техника полупроводников, 2000, том 34, вып. 1

и 2) наблюдается при $N_I = 9.4 \cdot 10^{17} \text{ см}^{-3}$ (где N_I — концентрация ионизованной примеси и дефектов) и $N_S = 6.6 \cdot 10^{16} \text{ см}^{-3}$. При T < 150 K экспериментальная подвижность $\mu \sim T^{1/2}$ (рис. 4, штриховая прямая 4), что характерно для рассеяния на диполях [11]. Следовательно, после термического отжига в материале присутствуют комплексы дефектов с концентрацией $6.6 \cdot 10^{16} \text{ см}^{-3}$, а также дефекты предположительно дипольной природы.

На рис. 5 приведены экспериментальные (1-3) и расчетные (1'-3') зависимости $\mu(T)$ электронов в эпитаксиальном GaAs после БТО при 825°С (кривые 1, 1') и при 905°С (кривые 2, 2'), а также в монокристаллическом GaAs после БТО при 825°С (кривые 3, 3'). Параметры N_I и N_S , при которых получены зависимости 1'-3', приведены в табл. 2. Из рис. 5 и табл. 2 видно, что:

1. В ИЛС на основе монокристаллического GaAs после БТО при 825°С (рис. 5, кривые 3 и 3') не обнаружено дополнительных рассеивающих центров типа комплексов дефектов (модель Вайсберга), в то время как после отжига эпитаксиального материала при той же температуре (рис. 5, кривые 1 и 1') такие центры присутствуют, хотя и в малой концентрации.

2. БТО при 905°С ионно-легированных слоев на основе эпитаксиального GaAs (рис. 5, кривые 2 и 2') приводит к заметной деградации материала — концентрация комплексов дефектов увеличивается почти на порядок по сравнению с отжигом при 825°С.

3. После БТО (рис. 5) в отличие от длительного ТО (рис. 4) на зависимости $\mu(T)$ отсутствует дипольный "хвост" при низких температурах.

Заключение

1. После БТО по сравнению с длительным ТО наблюдается диффузионное перераспределение Si в глубь GaAs для материалов обоих типов. Коэффициент диффузии в монокристаллическом GaAs примерно в 2 раза больше,

Таблица 2. Значения параметров, характеризующих структурное совершенство монокристаллического и эпитаксиального GaAs после термического отжига

Тип материала, вид отжига, температура, время	$N_I, \ 10^{17} \ \mathrm{cm}^{-3}$	$N_S, \ 10^{16} \ \mathrm{cm}^{-3}$
Монокристалл,	9.4	6.6
ТО, 800°С, 30 мин Монокристалл, БТО, 825°С, 12 с	6.8	0
Эпитаксиальный,	5.4	0.26
Б10, 825 С, 12с Эпитаксиальный, БТО, 905°С, 12с	5.5	2.0

Примечание. ТО — термический отжиг, БТО — быстрый термический отжиг.

Физика и техника полупроводников, 2000, том 34, вып. 1

Рис. 5. Температурные зависимости подвижности электронов после быстрого термического отжига GaAs: 1, 1', 2, 2' — эпитаксиального, 3, 3' — монокристаллического; 1-3 — экспериментальная холловская подвижность, 1'-3' — расчет с помощью выражения (4). Температура отжига T_{ann} , °C: 1, 3 — 825, 2 — 905.

а степень активации — несколько меньше, чем в эпитаксиальном. Значения коэффициента диффузии D для БТО в среднем на 2 порядка больше, чем для ТО. Энергии активации для D и степени электроактивации кремния η меньше соответствующих величин при ТО, что свидетельствует о снижении высоты потенциальных барьеров для диффузии и активации кремния по сравнению с чисто термическими процессами.

2. После БТО при 825°С монокристалла GaAs не обнаружено дополнительных рассеивающих центров типа скоплений дефектов, в то время как после отжига эпитаксиального материала при той же температуре такие центры присутствуют, хотя в сравнительно небольшой концентрации. БТО эпитаксиального GaAs при 905°С приводит к заметной деградации материала — концентрация скоплений дефектов увеличивается почти на порядок по сравнению с отжигом при 825°С. После БТО в отличие от ТО отсутствует "хвост" при низких температурах, обусловленный предположительно рассеянием на диполях.

Список литературы

- [1] В.М. Ардышев, М.В. Ардышев. ФТП, 10, 1153 (1998).
- [2] В.М. Ардышев, М.В. Ардышев. Изв. вузов. Физика, № 7, 89(1998).
- [3] В.М. Ардышев, М.В. Ардышев. Изв. вузов. Физика, № 11, 78 (1998).

- [4] А.В. Буренков, Ф.Ф. Комаров, М.А. Кумахов, М.М. Тёмкин. Таблицы параметров пространственного распределения имплантированных примесей (Минск, Изд-во БГУ, 1980).
- [5] МОП-СБИС. Моделирование элементов и технологических процессов, пер. с англ. под ред. Р.А. Суриса (М., Радио и связь, 1988).
- [6] Т.Т. Лаврищев, С.С. Хлудков. В сб.: Арсенид галлия (Томск, Изд-во ТГУ, 1974).
- [7] Б.М. Горюнов, Е.И. Зорин, П.В. Павлов, В.П. Сорвина, В.С. Тулопчиков, Н.В. Тяжелова. В сб.: Арсенид галлия (Томск, Изд-во ТГУ, 1974).
- [8] B. Pödor, N. Nador. Acta Phys. Acad. Sci. Hung., 37(4), 317 (1974).
- [9] Ф. Блатт. Теория подвижности электронов в твердых телах, пер. с англ. под ред. А.И. Ансельма (М., Физматгиз, 1963).
- [10] L.R. Weisberg. J. Appl. Phys., 33, 1817 (1962).
- [11] R. Stratton. J. Phys. Chem. Soc., 23, 1011 (1962).

Редактор Т.А. Полянская

Singularities of ²⁸Si electrical activation in a single crystal and epitaxial GaAs under fast annealing

V.M. Ardyshev, M.V. Ardyshev*, S.S. Khludkov*

Tomsk Polytechnical University, 634004 Tomsk, Russia * Siberian Physicotechnical Institute under Tomsk State University, 634050 Tomsk, Russia

Abstract Using the voltage-capacitance characteristics method, the concentration profiles of ²⁸Si that was implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950°C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of $70 \div 400$ K has been measured. Unlike thermal annealing (800°C, 30 min), the silicon diffusion redistribution deep into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The activation energies for *D* and η processes are less than similar values under TA. The $\mu(T)$ analysis demonstrates the absence or any noticeable lowering of complementary electron scattering centers that were identified as defect complexes.