Рентгеновское измерение тензора микродисторсии и анализ на его основе дислокационной структуры толстых слоев GaN, полученных методом хлоргидридной газофазной эпитаксии

© В.В. Ратников, Р.Н. Кютт, Т.В. Шубина

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 27 апреля 2000 г.)

Методами двух- и трехкристальной (ТКД) рентгеновской дифрактометрии изучена дислокационная структура толстых GaN слоев, выращенных хлоргидридной газофазной эпитаксией (ХГЭ) как на сапфире, так и на тонком GaN слое, выращенном методом металлорганического синтеза (МОС). Из измерений дифрагированной интенсивности в геометриях Брэгта и Лауэ получены пять компонент тензора микродисторсии $\langle \varepsilon_{ij} \rangle$, размеры областей когерентного рассеяния вдоль поверхности образцов и по нормали к ней. На их основе проведен анализ типа и геометрии расположения дислокаций и проведен расчет плотности основных типов дислокаций. При росте на тонком слое GaN уменьшается плотность как вертикальных винтовых, так и краевых дислокаций (в 1.5–3 раза). Дифракционные характеристики толстого слоя на МОС-GaN подложке позволяют считать его монокристаллическим с включениями микроскристаллических областей.

Работа проводилась при поддержке Российского фонда фундаментальных исследований (проекты № 99-02-17103 и 00-02-16760), а также Программы Министерства науки Российской Федерации "Физика наноструктур" (97-2014а).

Одной из серьезных проблем при эпитаксиальном росте GaN является большая разница в постоянных решетки и температурных коэффициентах расширения слоев и обычно используемых для их роста подложках сапфира. В результате происходят изгиб образцов и генерация различных дефектов, приводящие к ухудшению оптоэлектронных характеристик слоев. Эта проблема может быть решена, в частности, при использовании гомоэпитаксиального роста GaN, однако до сих пор кристаллы и слои GaN редко используются в качестве подложек. Другим подающим надежды подходом является получение толстых GaN слоев, выращенных методом ХГЭ [1-4], которые могут использоваться для последующего роста гетероструктур. Недавно было показано, что применение MOC GaN тонких слоев (на сапфире) в качестве подложек для последующего роста XГЭ GaN может заметно улучшить качество их структуры [5].

Для изучения дефектов в слоях GaN используются различные методы, включая фото- и катодолюминесценцию, просвечивающую электронную микроскопию (ПЭМ), атомную силовую микроскопию, методы Рамана и рентгеновской дифрактометрии [1–6]. Согласно полученным данным, слои характеризуются высокой плотностью дефектов вблизи границы раздела слоя и подложки, уменьшающейся в направлении поверхности. Найдено также изменение размера микроблоков в слоях при удалении от интерфейса. Наряду с вертикальными винтовыми и краевыми, в слоях присутствуют и дислокации смешанного типа, хотя первых значительно больше [4].

Среди перечисленных выше метод рентгеновской дифрактометрии — единственный неразрушающий метод, позволяющий получать информацию сразу о большом объеме слоя. Как правило, для этой цели используются измерения симметричной дифракции в геометрии Брэгга. В рамках мозаичной модели дисперсия оси с микрокристаллитов (далее — областей когерентного рассеяния (ОКР)) приводит из-за мозаичного разброса (MP, tilt) к уширению кривых качания в направлении нормали к дифракционному вектору, которое одинаково для любого используемого рефлекса, в то время как так называемый размерный эффект из-за ограничения размеров ОКР зависит от угла дифракции. Это поведение симметричных дифракционных кривых широко используется для анализа дефектной структуры нитридов. В [7] авторы указывают на ограниченные возможности такого анализа и предлагают использовать также измерения асимметричных брэгговских отражений. Однако предлагаемое использование измерений асимметричных отражений в геометрии Брэгга, на наш взгляд, малоэффективно из-за того, что уширения асимметричных отражений содержат (в общем виде) сложную комбинацию вкладов микроразворотов и микродеформаций, параллельных и нормальных к поверхности плоскостей, а также уширений из-за ограничения ОКР вдоль и по нормали к образцу. Необходимость дополнительного моделирования соотношения компонент в измеряемых полуширинах в этом случае затрудняет проведение анализа дефектной структуры. Кроме того, обычно используемая мозаичная модель не рассматривает структурные дефекты и связанную с ними деформацию решетки в самих ОКР.

В этой статье используется комплексный подход, основанный на рентгеновском измерении тензора микродисторсии для слоев GaN, полученных методом ХГЭ, позволяющий избежать перечисленных выше недостатков. Микродисторсии из-за полей смещений вокруг структурных дефектов изменяют форму узла обратной решетки (OP), вызывая его уширение и тем самым уширение соответствующей дифракционной кривой [8,9]. Мы включили индуцируемые дефектами микродисторсии кристаллических плоскостей в микрозернах в наше рассмотрение и показываем, как, используя лишь две моды сканирования (θ - и (θ -2 θ)) и две геометрии (Брэгг и Лауэ) симметричной дифракции, получить из дифракционных кривых тензор микродисторсии и размер ОКР вдоль и по нормали к поверхности образца. В статье проводится простой анализ связи между измеряемым тензором микродисторсии, типом и геометрией расположения дислокаций в GaN. Демонстрируются возможности предлагаемого анализа на примере сравнения структурного качества толстых ХГЭ слоев GaN, выращенных на сапфире и на МОС тонких подложках GaN.

Рентгеновская дифракция и микродисторсии кристаллической решетки в нитридах

Различное влияние МР и размерного эффекта при мозаичной структуре кристаллов на уширение брэгговских кривых качания анализируется обычно по методике, предложенной в [10]. Предполагая линейную суперпозицию вкладов, строят зависимости

И

$$\omega_{\theta}(\sin\theta/\lambda) = f(\sin\theta/\lambda) \tag{1}$$

$$\omega_{\theta-2\theta}(\cos\theta/\lambda) = f(\sin\theta/\lambda),\tag{2}$$

где ω_{θ} и $\omega_{\theta-2\theta}$ — угловая ширина на половине максимума интенсивности отражения (УШПМ) при θ - и $(\theta-2\theta)$ -сканировании, θ и λ — угол Брэгга и длина волны рентгеновского излучения соответственно. Из наклона (1) определяется вклад микроразориентаций ω_{tilt} в уширения. Наклон зависимости (2) дает значения микродеформации ε_c вдоль оси *c*. Из отрезков, отсекаемых зависимостями (1) и (2) на оси *y*, оцениваются размеры ОКР вдоль τ_x и по нормали к поверхности τ_z .

Недавно нами предложен [9] новый подход к характеризации структурного совершенства сильно рассогласованных эпитаксиальных слоев, основанный на рентгеновском измерении компонент тензора микродисторсии $\langle \varepsilon_{ij} \rangle$, представляющих собой среднеквадратичные отклонения компонент средней дисторсии. Из-за изотропности плоскости (0001) в гексагональном GaN тензор микродисторсии состоит лишь из пяти независимых компонент. Однако уширение симметричных θ - и (θ -2 θ)-отражений, каждое из которых связано лишь с одной из компонент $\langle \varepsilon_{ij} \rangle$, определяется также и размерами ОКР вдоль τ_x и по нормали к поверхности τ_z .

Чтобы разделить вклады от компонент тензора $\langle \varepsilon_{ij} \rangle$ и ОКР, мы предлагаем наряду с брэгговской отражательной геометрией использовать измерения дифрагированной интенсивности в симметричной геометрии Лауэ (прохождение). Тогда брэгговская трехкристальная θ -кривая содержит информацию о ε_{zx} и τ_z , $(\theta - 2\theta)$ -кривая — о ε_{zz} и τ_x . В Лауэ-геометрии из θ -кривой получают ε_{xz} и τ_z , из $(\theta - 2\theta)$ -кривой — ε_{xx} и τ_x . Таким образом, применение двух мод сканирования в двух симметричных геометриях дифракции позволяет измерить каждую из компонент тензора микродисторсии без дополнительных предположений о их соотношении в измеряемых полуширинах.

Как упоминалось выше, лишь МР и размерный эффект используются обычно при анализе структурного совершенства сильно рассогласованных эпитаксиальных слоев в рамках мозаичной модели. Однако наши измерения Лауэ-дифракции показали различия в уширениях брэгговской (В) и лауэвской (L) θ -кривых отражения (с учетом размерного эффекта), что дает основание считать мозаичную модель не вполне адекватной. Очевидно, необходимо рассматривать при анализе измеренных полуширин также вклад индивидуальных дефектов в самих микроблоках. Это важно делать и в связи с совершенствованием технологии получения все менее дефектных (вплоть до монокристаллических) слоев нитридов. Поэтому для θ -сканирования мы записываем

$$\left(\omega_{\theta}^{\mathrm{B}(\mathrm{L})}\right)^{2} = \left(\omega_{\tau_{X}(\tau_{\mathcal{I}})}^{\mathrm{B}(\mathrm{L})}\right)^{2} + \left(\omega_{\mathrm{tlt}}^{\mathrm{B}(\mathrm{L})}\right)^{2} + \left(\omega_{\varphi}^{\mathrm{B}(\mathrm{L})}\right)^{2}, \quad (3)$$

где слагаемое $\omega_{\tau x(\tau z)}^{B(L)} \sim \lambda/(\tau_{x(z)}\sin\theta)$ связано с размерным эффектом вдоль дифрагирующих плоскостей. Вклад $\omega_{tt}^{B(L)}$ определяется МР разупорядочением ОКР, не зависит от угла Брэгга θ и одинаков при измерениях Брэгг- и Лауэ-дифракции ($\omega_{tt}^{B} = \omega_{tt}^{L}$). Вклад $\omega_{\varphi}^{B(L)} \sim \langle \varepsilon_{zx(xz)} \rangle$ пропорционален сдвиговой компоненте тензора микродисторсии и его источником являются микроразориентации дифрагирующих плоскостей вблизи дефектов в ОКР.

Уширение ($\theta - 2\theta$)-кривой определяется лишь двумя компонентами

$$\left(\omega_{\theta-2\theta}^{\mathrm{B}(\mathrm{L})}\right)^{2} = \left(\omega_{\tau z(\tau x)}^{\mathrm{B}(\mathrm{L})}\right)^{2} + \left(\omega_{\varepsilon}^{\mathrm{B}(\mathrm{L})}\right)^{2},\tag{4}$$

где $\omega_{\tau z(\tau x)}^{\mathrm{B}(\mathrm{L})} \sim \lambda/(\tau_{z(x)} \cos \theta)$ связан с размерным эффектом вдоль нормали к дифрагирующим плоскостям, $\omega_{\varepsilon}^{\mathrm{B}(\mathrm{L})} \sim \langle \varepsilon_{zz(xx)} \rangle \operatorname{tg} \theta$ пропорционален диагональной компоненте тензора и определяется микродеформациями дифрагирующих плоскостей.

Как в брэгговской, так и в лауэвской геометрии вклады в уширения θ - и (θ -2 θ)-отражений суммируются нами по квадратичному закону, так как кривые отражения имели гауссовскую форму (см. [9]).

Чтобы полностью характеризовать структурное совершенство нитридов, измерений уширения θ - и $(\theta - 2\theta)$ -симметричных отражений недостаточно, так как имеются также как вращение ОКР в плоскости слоев, так и микроразвороты (МРВ, twt) локальных областей кристаллов вблизи дефектов вокруг нормали к поверхности. Как недавно показано [11], корректная величина МРВ-компоненты ω_{twt} может быть получена из зависимости полуширин ω_{OOP} серии симметричных брэгговских отражений типа (101*l*) от угла ξ , образуемого этими (out of plane, (ООР)) плоскостями с

Рис. 1. Связь компонент тензора микродисторсии $\langle \varepsilon_{ij} \rangle$ с формой узлов обратной решетки для разных типов и геометрии расположения дислокаций (*a*-*e*) и разворотов кристаллической решетки в плоскости слоя (*f*). vs — вертикальные винтовые, hs — горизонтальные винтовые, ve — вертикальные краевые, he — горизонтальные краевые дислокации, twt — twist, **b** — вектор Бюргерса, **H** — вектор дифракции, **n** — нормаль к поверхности.

базовой (0001) плоскостью, а не из обычно используемого ϕ -сканирования [7,12] или измерений скользящей брэгговской дифракции (СБД) [13]. В измеряемой при ϕ -сканировании полуширине присутствуют как МР-, так и МРВ-вклады, а методологически верный метод СБД дает информацию лишь об очень тонком (~ 100 nm) приповерхностном слое. Когда ξ возрастает, влияние tilt на ω_{OOP} уменьшается при одновременном возрастании twist-компоненты, поэтому измерение ω_{OOP} как функции ξ и экстраполяция зависимости $\omega_{OOP} = f(\xi)$ на $\xi = 90^{\circ}$ дает величину ω_{twt} . Измеряемая методом ООР величина ω_{twt} связана с компонентами тензора микродисторсии

$$(\omega_{\rm twt})^2 = \langle \varepsilon_{xx} \rangle^2 + \langle \varepsilon_{xy} \rangle^2. \tag{5}$$

2. Тензор микродисторсии и дислокации в GaN

Кроме дисперсии оси с микроблоков и связанным с нею присутствием в слоях малоугловых границ, состоящих из горизонтальных краевых дислокаций, основными дефектами в слоях являются вертикальные винтовые и краевые дислокации (см., например, [5-7,9]). При анализе дислокационной структуры слоев мы использовали связь компонент $\langle \varepsilon_{ii} \rangle$ с геометрией и типом дислокаций в GaN. Например, вертикальная винтовая дислокация с вектором Бюргерса, параллельным нормали к поверхности, вносит вклад лишь в $\langle \varepsilon_{zx} \rangle$ компоненту, в то время как вертикальная краевая дислокация с вектором Бюргерса, параллельным поверхности, вносит вклады как в $\langle \varepsilon_{xx} \rangle$ (L), так и в $\langle \varepsilon_{xy} \rangle$ (B). Аналогичный вид зависимости для основных типов дислокаций в геометрии их залегания в GaN иллюстрирует рис. 1. Геометрия съемки (В или L) определяет взаимную ориентацию нормали к поверхности n и вектора дифракции H. Плотность вертикальных винтовых дислокаций $ho_{
m vs}$ оценивается из $\langle arepsilon_{zx}
angle$ с использованием модифицированного нами выражения в [14]

$$\rho_{\rm vs} = \langle \varepsilon_{zx} \rangle^2 / 0.92 \cdot b_{\rm vs}^2, \tag{6}$$

где $b_{\rm vs}$ — вектор Бюргерса винтовой дислокации (0.5186 nm в GaN). Плотность хаотически распределенных вертикальных краевых дислокаций $\rho_{\rm ve}$ можно найти, также используя выражение (6), но заменив $\langle \varepsilon_{zx} \rangle$ на $\langle \varepsilon_{xy} \rangle$ и $b_{\rm vs}$ на $b_{\rm ve} = 0.3185$ nm.

Когда вертикальные краевые дислокации образуют малоугловые границы, их плотность дается [14]

$$b_{\rm ve}^{\rm lab} = \langle \varepsilon_{xy} \rangle^2 / (2.1 b_{\rm ve} \tau_x), \tag{7}$$

где τ_x — расстояние между этими границами вдоль поверхности.

3. Эксперимент

Толстые слои GaN (25 μ m), изучавшиеся в этой работе, были выращены при 1090°С методом ХГЭ, описанным ранее [3]. Образцы выращивались на (0001) сапфире без буфера (A206) и на тонком слое GaN(U296). Тонкий (2.5 μ m) MOC-GaN слой (ATX5), использовавшийся в качестве подложки, также выращивался на (0001) сапфире. Его структурные параметры также были изучены с целью оценки исходных условий для роста толстого слоя.

Рентгендифракционные измерения слоев проводились как на двухкристальном, так и трехкристальном дифрактометре в геометриях Брэгга (Си $K_{\alpha 1}$) Лауэ (Мо $K_{\alpha 1}$). На трехкристальном дифрактометре измерялись кривые θ - и ($\theta - 2\theta$)-сканирования следующих отражений слоев GaN (рис. 2): симметричные 0002 и 0004 рефлексы в геометрии Брэгга, симметричные 1010 и 2020 рефлексы в геометрии Лауэ (слой на выходе рентгеновского луча).

Двукристальные кривые с широко открытым окном детектора измерялись для: асимметричных рефлексов в геометрии Брэгга при скользящем угле падения ($11\overline{24}$) и отражения ($11\overline{24}$) рентгеновского луча (нормаль к поверхности образца — в плоскости рассеяния), симметричных рефлексов типа $10\overline{1}l$ в геометрии Брэгга от плоскостей, образующих с поверхностью (0001) углы от 17 до 75 град соответственно (нормаль к поверхности образца — вне плоскости рассеяния).

В качестве монохроматора и анализатора использовались совершенные кристаллы Ge(220), дававшие разрешение не хуже 15 угловых секунд. Дисперсия в рентгенооптической схеме учитывалась при обработке дифракционных кривых.

Рис. 2. Схемы Брэгт (В)- и Лауэ (L)-геометрий измерения рентгеновской дифракции в GaN (*a*) и взаимное расположение и форма узлов обратной решетки использованных рефлексов для слоев GaN (*b*).

0.5			Брэгг				Лауэ			
Образец	$\omega_{ m twt}$	1124/1124	θ 0002	$\begin{array}{c} \theta-2 heta\\ 0002 \end{array}$	$ heta \\ 0004$	$\begin{array}{c} \theta-2 heta\\ 0004 \end{array}$	$\begin{array}{c c} \theta & \theta \\ 10\overline{1}0 & 1 \end{array}$	$\begin{array}{c} \theta-2 heta\\ 10ar{1}0 \end{array}$	θ 202̄0	$\begin{array}{c} \theta-2 heta\\ 20ar{2}0 \end{array}$
A206 ATX5 U296	1400 862 675	560/920 257/590 153/261	591 414 215	42 26 17	535 390 200	90 67 69	525 184 62	44 42 22	510 180 75	85 75 42

Таблица 1. Полуширины УШПМ для слоев GaN (в arc.sec.)

4. Результаты и обсуждение

Полуширины дифракционных кривых образцов представлены в табл. 1. Поправка на макроизгиб образцов $(\sim 5$ угловых секунд для образца А206 с наибольшей кривизной) учитывалась при обработке экспериментальных результатов согласно [15]. Для всех образцов наблюдаются следующие особенности измеренных полуширин: i) $\omega_{ heta} \gg \omega_{ heta-2 heta}$, что говорит о сильной анизотропии дифракционного рассеяния (формы узла в обратном пространстве); ii) $\omega_{\theta}^{0002} > \omega_{\theta}^{0004}$ указывает на присутствие размерного эффекта в измеренных полуширинах; ііі) $\omega_{\theta-2\theta} \sim \operatorname{tg} \theta$ свидетельствует о том, что уширение ($\theta - 2\theta$)-кривых определяется в основном микродеформациями типа сжатие-растяжение; iv) $\omega^{11\bar{2}4} < \omega^{11\bar{2}\bar{4}}$ и $\omega^{11\bar{2}4} < \omega^{0002}$ служит указанием на то, что узел обратной решетки вытянут не вдоль дифракционного вектора, а вдоль поверхности (или занимает промежуточное положение между ними); v) $\omega_{\theta}^{0002} > \omega_{\theta}^{10\bar{1}0}$.

Если бы слои состояли только из свободных от дефектов ОКР с некоторым мозаичным разбросом, следовало бы ожидать равенства ω_{θ}^{0002} и $\omega_{\theta}^{10\bar{1}0}$. Пункт v) говорит о неправомерности такого допущения. Если учесть, что размерный эффект мал $(\omega_{ heta}^{0004,20\bar{2}0}/\omega_{ heta}^{0002,10\bar{1}0} \geqslant 0.9),$ а влиянием горизонтальных краевых (несоответствия) дислокаций на $\omega_{\theta}^{10\bar{1}0}$ можно пренебречь, то можно считать, что $\omega_{ heta}^{10\bar{1}0}\cong\omega_{ ext{tlt}}$. Тогда разница между $\omega_{ heta}^{0002}$ и $\omega_{\theta}^{10\bar{1}0}$ указывает на то, что ω_{θ}^{0002} содержит также вклад от дефектов, смещения от которых имеют ненулевую проекцию на дифракционный вектор. В проводимом далее анализе уширений рентгеновских рефлексов мы исходим из того, что наряду с размерным эффектом из-за ограниченного размера ОКР уширения θ -кривых определяются двумя компонентами разориентаций. Первая определяется угловым разворотом ОКР (так называемым мозаичным разбросом, второе слагаемое в формуле (3)) и не зависит от выбранного рефлекса и геометрии съемки. Причиной возникновения мозаичного разброса являются для нитридов сильное рассогласование параметров решеток слоя и подложки и связанный с этим трехмерный рост. Вторая компонента обусловлена дефектами в самих микроблоках, в основном прорастающими вертикальными винтовыми и краевыми дислокациями (третье слагаемое в формуле (3)).

Компоненты тензора микродисторсии, полученные из экспериментальных полуширин с использованием формул (1)–(5), приведены в табл. 2.

Для рассматриваемых слоев характерны следующие общие закономерности поведения компонент $\langle \varepsilon_{ij} \rangle$: i) $\langle \varepsilon_{zx} \rangle > \langle \varepsilon_{xz} \rangle$, т.е. микроразориентации плоскостей, параллельных поверхности больше, чем перпендикулярных к ней; ii) $\langle \varepsilon_{xx} \rangle > \langle \varepsilon_{zz} \rangle$, что соответствует более высокому уровню микродеформации плоскостей, перпендикулярных поверхности, в сравнении с параллельными поверхности плоскостями.

Кроме того, имеется сильное различие между компонентами для толстого ХГЭ GaN, выросшего на сапфире и на тонком MOC-GaN слое.

4.1. Нелегированный MOC-GaN (ATX5) и толстый слой (U296) на нем. Из табл. 2 видно, что для обоих образцов $\langle \varepsilon_{zx} \rangle > \langle \varepsilon_{xz} \rangle$. Значения $\langle \varepsilon_{zx} \rangle$ и $\langle \varepsilon_{xz} \rangle$, приведенные в табл. 2, включают в себя и мозаичный разброс ОКР, одинаковый для обеих геометрий дифракции $\omega_{\varphi}^{\mathrm{B}}=\omega_{\varphi}^{\mathrm{L}}.$ Поэтому разница $\langle arepsilon_{zx}
angle$ и $\langle \varepsilon_{xz} \rangle$ обусловлена только типом и геометрией залегания дефектов (дислокаций) в самих микроблоках. Согласно рис. 1, лишь вертикальные винтовые дислокации вносят вклад в $\langle \varepsilon_{zx} \rangle$ и не влияют на $\langle \varepsilon_{xz} \rangle$, в то время как вертикальные краевые дислокации не влияют на обе компоненты тензора. Иными словами, разница компонент для двух геометрий дифракции дает возможность рассчитать плотность вертикальных винтовых дислокаций $\rho_{\rm vs}$. В то же время разница в абсолютных значениях $\langle \varepsilon_{zx} \rangle$ и $\langle \varepsilon_{xz} \rangle$ для тонкого MOC-GaN и толстого слоя на

Таблица 2. Компоненты тензора микродисторсии $\langle \varepsilon_{ij} \rangle$, размеры ОКР τ_i и плотности дсилокаций ρ в слоях GaN

Компоненты	A206	ATX5	U296
$\langle \varepsilon_{zz} \rangle$, 10^{-4}	2.29	2.36	2.59
$\langle \varepsilon_{zx} \rangle$, 10^{-4}	12.50	9.24	4.71
$\langle \varepsilon_{xx} \rangle$, 10 ⁻⁴	7.57	6.74	3.75
$\langle \varepsilon_{xz} \rangle$, 10^{-4}	12.20	4.32	1.90
$\langle arepsilon_{xy} angle, 10^{-4}$	67.40	41.25	32.52
$ au_{x}\left(\mu\mathrm{m} ight)$	0.68	1.00	1.61
$ au_{z}\left(\mu\mathrm{m} ight)$	0.40	1.29	$\gg 1$
$ ho_{\rm vs}$, $10^8~{\rm cm}^2$	0.30	2.70	0.75
$ ho_{ m ve},10^{10} m cm^2$	4.87	1.83	1.13
$ ho_{\mathrm{ve}}^{cl}$, 10 ⁷ cm ²	1.01	0.25	0.10

нем может быть связана как с уменьшением плотности вертикальных винтовых дислокаций в растущем толстом слое (из-за их загибания в плоскость слоя и образования дислокационных полупетель), так и с удалением исследуемой области слоя от сильно дефектного интерфейса. Таким образом, не значения $\langle \varepsilon_{zx} \rangle$, а $\delta^2 = \langle \varepsilon_{zx} \rangle^2 - \langle \varepsilon_{xz} \rangle^2$ нужно использовать при расчете ρ_{vs} по соотношению (6).

Как следует из табл. 1, $\langle \varepsilon_{zz} \rangle$ определяется лишь горизонтальными краевыми дислокациями. Поскольку величина $\langle \varepsilon_{zz} \rangle$ практически одинакова в MOC-GaN подложке и толстом слое на ней, то плотность этого типа дислокаций (или дефектов с аналогичными полями смещений) не меняется при ХГЭ росте GaN.

 $\langle \varepsilon_{xx} \rangle$ зависит от присутствия в слоях как вертикальных, так и горизонтальных краевых (несоответствия) дислокаций, и уменьшение почти в 2 раза $\langle \varepsilon_{xx} \rangle$ при переходе к толстому слою указывает на уменьшение плотности таких дислокаций. Поскольку дислокации несоответствия расположены преимущественно у интерфейса, уменьшение $\langle \varepsilon_{xx} \rangle$ может быть связано с падением их влияния на дифракционную кривую толстого образца. Однако уменьшение на 1/4 и $\langle \varepsilon_{xy} \rangle$ дает основание утверждать, что одновременно уменьшается и плотность вертикальных краевых дислокаций ρ_{ve} (аннигиляция дислокаций, их загиб в базовую плоскость). Величины ρ_{ve} , рассчитанные по (6) с использованием $\langle \varepsilon_{xy} \rangle$, представлены в табл. 2. Там же дается значение плотности вертикальных краевых дислокаций $\rho_{\mathrm{ve}}^{\mathrm{lab}}$ (образующих малоугловые границы), получаемой из $\langle \varepsilon_{xy} \rangle$ и значений латерального размера ОКР τ_x по (7). Значение ρ_{ve}^{lab} на 3 порядка ниже, чем $\rho_{\rm ve}$. Значения $\rho_{\rm ve}$, полученные нами из $\langle \varepsilon_{xy} \rangle$ и $\langle \varepsilon_{xx} \rangle$ (аналогично [16]), говорят о преимущественном расположении вертикальных краевых дислокаций не в межзеренных границах, а в пределах самих зерен.

Необходимо отметить различие в значениях ρ_{ve} , полученных из наших измерений и методом ПЭМ [5]. Поскольку $\rho_{ve} \sim \omega_{OOP}^2$, то возможное присутствие в слоях дефектов упаковки может приводить к дополнительному уширению ω_{OOP} , не связанному с присутствием дислокаций, и, как следствие, к завышенной оценке ρ_{ve} . Однако эта корректировка не может устранить разницу с данными ПЭМ. Необходима также критическая оценка ПЭМ данных как с точки зрения улучшения статистики обработанных изображений, так и полноты выявления всех дислокаций.

Суммируя результаты для этих двух образцов, следует отметить 1.5-3-кратное уменьшение плотности дислокаций в ХГЭ GaN в сравнении с MOC-GaN подложкой наряду с одновременным увеличением размеров ОКР. Экстремально низкое значение полуширины θ -ТКД кривой отражения в геометрии Лауэ (62 угловые секунды), не наблюдавшееся ранее для нитридов, дает основание считать толстый ХГЭ слой GaN монокристаллическим, с включением незначительного количества микрокристаллических областей.

4.2. Толстый ХГЭ слой GaN (А206) на сапфире. Для него $\langle \varepsilon_{zx} \rangle$ близко к $\langle \varepsilon_{xz} \rangle$, что усложняет

анализ дислокационной структуры, так как разделение вкладов из-за мозаичного разброса и дислокаций использованным ранее способом невозможно. То, что полуширины всех (исключая $11\bar{2}\bar{4}$) θ -кривых дифракции близки, указывает на MP-вклад как на основную причину уширения дифракционной кривой в этом случае. Если, как и ранее, предположить, что $\omega_{\rm tlt} \cong \omega_{ heta}^{10\bar{1}0}$, то расчет дает $ho_{\rm vs} = 0.25 \cdot 10^8 \, {\rm cm}^2$, что ниже, чем для тонкого MOC-GaN и ХГЭ GaN на нем. В то же время все УШПМ при росте толстого слоя на сапфире без буфера выше. Это говорит о переоценке МР-вклада в ω_{θ}^{1010} и влиянии дефектов на эту полуширину. Для более детального анализа этого слоя необходимы построение карты распределения дифрагированной интенсивности в обратном пространстве и детальный анализ дислокационной структуры на ее основе, аналогичный проведенному в [17].

Плотности вертикальных хаотически распределенных краевых дислокаций, рассчитанные из $\langle \varepsilon_{xy} \rangle$ по (6) и (7) для модели дислокаций, образующих малоугловые границы, приводятся в табл. 2. Их величина в этом слое в 4 раза выше (для хаотических дислокаций), чем для толстого ХГЭ слоя на МОС-GaN подложке и на порядок — для модели образования из вертикальных краевых дислокаций малоугловых границ.

Таким образом, в настоящей работе проведено комплексное рентгендифрактометрическое исследование дислокационной структуры толстых ХГЭ слоев GaN как на сапфире, так и на тонком MOC слое GaN как подложке.

В работе использован предложенный ранее авторами подход, связанный с рентгендифрактометрическим измерением тензора микродисторсии и анализом на его основе дефектной структуры эпитаксиальных слоев. Используются оптимальные рентгеновские схемы регистрации дифрагированной интенсивности и связи ее углового распределения с типом и положением дефектов в слоях.

Показаны недостатки мозаичной модели для анализа дислокационной структуры нитридов. При анализе уширений рентгеновских рефлексов предлагается кроме вкладов из-за мозаичного разброса и размерного эффекта выделять и анализировать компоненту, связанную с дефектами в ОКР (микрозернах).

Асимметрия формы узла обратной решетки характерна для всех образцов. Его положение меняется от вытянутого вдоль нормали к дифракционному вектору для образца A206 (из-за преобладания МР-эффекта) до вытянутого вдоль поверхности образца (из-за анизотропии как размеров ОКР, так и деформационных полей дефектов в них).

Дефектная структура всех исследовавшихся слоев характерна присутствием в них большего количества вертикальных винтовых и краевых (на 2 порядка больше) дислокаций. Найдено, что плотность вертикальных винтовых дислокаций снижается в толстом ХГЭ слое GaN в 2.5 раза в сравнении с MOC-GaN подложкой для его роста. Плотность вертикальных краевых дислокаций в толстом слое на подложке GaN ниже в 4 раза, чем при росте толстого слоя непосредственно на сапфире. Экстремально низкое значение полуширины θ-ТКД кривой отражения в геометрии Лауэ (62 угловых секунды) дает основание считать толстый слой монокристаллическим с включением незначительного количества микрокристаллических областей.

Авторы выражают благодарность д-ру Т. Пасковой и проф. Б. Монемару (University of Linköping, Sweden) за предоставленные образцы и полезную дискуссию.

Список литературы

- R.J. Molnar, W. Gotz, L.T. Romano, N.M. Johnson. J. Gryst. Growth. 178, 147 (1997).
- [2] L.T. Romano, B.S. Krusor, R.J. Molnar. Appl. Phys. Lett. 71, 2283 (1997).
- [3] H. Siegle, A. Hoffman, L. Eckey, C. Thomsen, J. Christen, F. Bertram, D. Shmidt, D. Rudloff, K. Hiramatsu. Appl. Phys. Lett. 71, 2490 (1998).
- [4] Y. Golan, X.H. Wu, J.S. Speck, R.P. Vaudo, V.M. Phanse. Appl. Phys. Lett. 73, 3090 (1998).
- [5] T. Pashkova, S. Tungasmita, E. Valcheva, E.B. Svedberg, B. Arnautov, S. Evtimova, P.A. Persson, A. Henry, R. Beccard, M. Heuken, B. Monemar. Mater. Res. Soc. Symp. Proc. (2000), в печати.
- [6] E.M. Goldys, T. Pashkova, I.G. Ivanov, B. Arnaudov, B. Monemar. Appl. Phys. Lett. 73, 3583 (1998).
- [7] T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, H.P. Strunk. Phil. Mag. A77, 1013 (1998).
- [8] R.N. Kyutt, T.S. Argunova. Nuovo Cimento D19, 267 (1997).
- [9] Р.Н. Кютт, В.В. Ратников, Г.Н. Мосина, М.П. Щеглов. ФТТ 41, 1, 30 (1999).
- [10] G.K. Williamson, W.H. Hall. Acta metall. 1, 22 (1953).
- [11] V. Srikant, J.S. Speck, D.R. Clarke. J. Appl. Phys. 82, 9, 4286 (1997).
- [12] M.C. Lee, H.-C. Lin, Y.-C. Pan, C.-K. Shu, J. Ou, W.-H. Chen, W.-K. Chen. Appl. Phys. Lett. 73, 2606 (1998).
- [13] K. Kobayashi, A. Yamaguchi, S. Kimura, H. Sanakawa, A. Kimura, A. Usui. Jpn. Appl. Phys. 38, L611 (1999).
- [14] C.O. Dunn, E.F. Koch. Acta metall. 5, 548 (1957).
- [15] J.E. Ayers. J. Crystal Growth 135, 71 (1994).
- [16] P.F. Fewster. J. Appl. Crystallogr. 22, 64 (1989).
- [17] P.F. Fewster. Int. School of Crystallography: 23rd Course, X-ray and Neutron Dynamical Diffraction: Theory and Applications. Erice, Italy (1996). P. 287.