Исследование нелинейной оптической восприимчивости третьего порядка полимерных комплексов диарилиденалканонов

© А.В. Теньковцев, А.В. Якиманский, В.Н. Лукошкин*, М.М. Дудкина, F. Boehme**

Институт высокомолекулярных соединений Российской академии наук,

199004 Санкт-Петербург, Россия

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

** Institut für Polumerforschung,

Dresden, Germany

(Поступила в Редакцию 2 марта 2000 г. В окончательной редакции 10 мая 2000 г.)

Методом генерации третьей гармоники на длине волны $1.06\,\mu\mathrm{m}$ исследована нелинейная оптическая (НЛО) восприимчивость третьего порядка в полимерных комплексах диарилиденалканонов. Измеренная величина макроскопической нелинейной восприимчивости $\chi^{(3)}$ сравнивалась с расчетными значениями γ -тензора молярной гиперполяризуемости второго порядка. Показано, что низкомолекулярные хромофоры могут быть использованы для синтеза стабильных полимерных композитных систем, обладающих высокой НЛО-восприимчивостью. Намечены пути дальнейшего увеличения НЛО свойств комплексов депротонированных хромофоров с высокоосновными полимерами.

Исследование нелинейных оптических свойств различных материалов привлекает в настоящее время все большее внимание, благодаря возможностям, которые открывает получаемая информация для анализа строения вещества и практического использования в приборах оптоэлектроники. Среди широкого класса материалов с выраженным нелинейно-оптическими откликом важнейшее значение приобретают вещества, обладающие зависящим от интенсивности света большим изменением показателя преломления. Это свойство дает возможность управления распространением оптического излучения в среде с помощью света — чисто оптические ключи, бистабильные приборы и т.д. Известно, что органические вещества с сильно делокализованной сопряженной системой π -электронов в большой мере обладают требуемым эффектом [1].

Ранее мы сообщали о применении высокоосновных полиамидинов в качестве H-связующих агентов для HЛО хромофоров диарилиденалканонового ряда [2]. В частности, было показано, что 2,6-бис(4-гидроксибензилиден)циклогексанон образует прочные комплексы с алифатическим полиамидином, причем в этом комплексе одна из концевых ОН-групп хромофора, по-видимому, депротонирована полимером (рис. 1).

На это указывает изменение цвета при смещении компонентов со светло-желтого на темно-красный, характеризующееся сдвигом максимума полосы поглощения хромофора на 130 nm [2]. Предварительные измерения показали, что пленки такого полимерного комплекса обладают заметной активностью в генерации третьей гармоники (ГТГ). Поэтому цель данной работы: 1) синтез широкого ряда хромофоров диарилиденалканонового ряда с концевыми ОН-группами и их комплексов с высокооосновными полиамидинами и 2) изучение ГТГ-свойств пленок этих комплексов.

1. Экспериментальная часть

Синтез диарилиденалканонов проводился по аналогии с известным из литературы [3] методом получения 2,6-ди-(4-оксибензилиден)циклогексанона. Данные элементного анализа ИК и ЯМР спектроскопии соответствовали предполагаемым структурам хромофоров. Для целей настоящей работы были синтезированы дибензилиденалканоны, структура которых приведена на рис. 2.

Комплексы исследуемых хромофоров с полиамидином (рис. 3) были приготовлены смешиванием растворов хромофоров в этаноле со спиртовым раствором полиамидина и имели мольное соотношение хромофора на мономерное звено полимера 0.5. Образцы для оптических исследований были получены выливанием раствором комплексов в этаноле на тефлоновую подложку с последующим испарением растворителя при комнатной температуре и атмосферном давлении. Полученные пленки перед проведением измерений высушивались в вакууме (0.1 Torr) до постоянного веса.

Рис. 1. Структура исследованных комплексов.

12* 2099

Ia $R = R_1 = H$; Ib $R = OCH_3$, $R_1 = H$; IIa $R = R_1 = H$; IIb $R = OCH_3$, $R_1 = H$; IIIa $R = R_1 = H$; IIIb $R = OCH_3$, $R_1 = H$.

Рис. 2. Химическая структура хромофоров, использованных для приготовления комплексов.

Рис. 3. Поли-1,10-декамитилен-ацетамидин. Химическая структура.

2. Описание физического эксперимента

Зависящая от интенсивности возбуждающего излучения вариация коэффициента показателя преломления определяется кубическим членом в разложении макроскопической поляризации диэлектрика по степеням напряженности внешнего электрического поля

$$P = \chi^{(1)}E + \chi^{(2)}EE + \chi^{(3)}EEE + \dots,$$

где $\chi^{(n)}$ — соответствующие оптические восприимчивости (для n>1 нелинейные).

Для оценки оптических нелинейностей третьего порядка разработано несколько широко применяемых в настоящее время методик, такие как вырожденное четырехволновое смешение [4], метод продольного сканирования (Z-scan) [5], метод ГТГ и другие. Среди них ГТГ является одной из самых эффективных и простых в технической реализации. К достоинствам этой методики следует отнести и то, что в данном случае определяется

чисто электронный вклад в нелинейно-оптическую восприимчивость третьего порядка $\chi^{(3)}$.

В настоящей работе для оценки нелинейно-оптических свойств синтезированных материалов был использован метод ГТГ. Для возбуждения образцов применялся импульсный лазер на гранате с неодимом, длина волны излучения составляла 1.06 μm. Лазер работал в режиме модулированной добротности, длительность импульса Энергию излучения в импульсе можно было варьировать в широких пределах (до 30 mJ). Гауссов пространственный профиль лазерного пучка задавался селекцией высших поперечных мод с помощью внутрирезонаторной диафрагмы. На исследуемый образец р-поляризованное излучение фокусировалось выпуклой сферической линзой с F = 100 mm. Часть получения (4%) отщеплялась светоделителем на откалиброванный фотодиод ФД-24К. После образца излучение третьей гармоники линзовой системой направлялось на входную щель решеточного монохрпоматора МДР-2 и далее на фотоумножитель ФЭУ-106. Электрические сигналы с обоих фотоприемников поступали на интегрирующие аналого-цифровые преобразователи и, через приборный интерфейс КАМАК — на персональный компьютер для последующей обработки.

Учитывая трудности определения абсолютных значений интенсивности возбуждающего излучения на образце, для оценки нелинейно-оптических восприимчивостей исследуемых материалов была использована относительная методика сравнения с эталонным образцом, помещенным в аналогичные условия. В качестве эталона использовалась пластина плавленного кварца толщиной 0.5 mm, выставленная по первому максимуму интенсивности третьей гармоники биений Мэйкера [6].

В этом случае величину $\chi^{(3)}$ для исследуемых материалов можно определить в соответствии с простым выражением, сравнивая интенсивности сигнала третьей гармоники от образца и эталона

$$\chi^{(3)} = \chi_s^{(3)} [I^{1/2}(3\omega)/l_c]/[I_s^{1/2}(3\omega)/l_{c,s}],$$

где $I(3\omega)$, $I_s(3\omega)$ — интенсивности ТГ от образца и эталона, $l_c, l_{c,s}$ — соответствующие длины когерентности и $\chi_s^{(3)}=3.11\cdot 10^{-14}\,\mathrm{esu}$ для $\mathrm{SiO_2}$ при $\lambda=1.06\,\mu\mathrm{m}$. Из этого выражения видно, что точное определение $\chi^{(3)}$

Таблица 1. Величины кубических восприимчивостей комплексов

Хромофор	$\chi^{(3)} \cdot 10^{14} \mathrm{esu}$ (эксперимент)	$\gamma \cdot 10^{36}$ esu (расчет)
Ia	10.7	53.8
Ib	33.7	59.6
IIa	10.0	
IIb	23.5	
IIIa	27.0	79.6
IIIb	38.2	89.9
IV	16.9	51.2

невозможно без знания длины когерентности изучаемого материала. Однако относительное значение кубичной восприимчивсти можно качественно оценить, пренебрегая различиями в длинах когерентности для разных веществ. Полученные оценки для $\chi^{(3)}$ представлены в табл. 1.

3. Обсуждение результатов

В табл. 2 приведены величины λ_{max} , характеризующие положение максимумов полос поглощения комплексов хромофоров с полиамидином. Из данных табл. 2 видно, что во всех случаях, кроме комплекса хромофора IV, имеются две полосы поглощения, более коротковолновая из которых отвечает недепротонированному фромофору, а более длинноволновая — депротонированному. Батохромный сдвиг полосы поглощения при депротонировани хромофора связан с делокализацией отрицательного заряда аниона вследствие сопряжения, что может быть представлено как суперпозиция резонансных бензоидной и хиноидной структур (рис. 4).

Такая делокализация невозможна в случае аниона хромофора IV из-за метаположения гидроксильной группы фенильного цикла по отношению к двойной С=С связи. Соответственно, взаимодействие фромофора IV с полиамидином не приводит к батохромному сдвигу полосы поглощения (табл. 2). При этом, как видно из табл. 2, величина батохромного сдвига растет при введении в бензилиденовые фрагменты электронодонорных (ауксохромных) групп.

В табл. 1 приведены измеренные макроскопические величины $\chi^{(3)}$ для комплексов фромофоров с полиамидином, а также значения молекулярной второй гиперполяризуемости, рассчитанные методом РМ-3 (частичное пренебрежние дифференциальным перекрыванием, версия 3) [7]. Видно, что введение ауксохромных заместителей в бензилиденовый фрагмент также приводит к росту $\chi^{(3)}$. Таким образом, обогащение бензилиденового фрагмента электронной плотностью приводит к уселению сигнала третьей гармоники комплекса фромофора с высокоосновным полиамидином. Видно также, что полиамидиновые комплексы хромофоров с циклическим центральным фрагментом (на основе циклопентанона

Таблица 2. Максимумы полос поглощения хромофоров и их комплексов с полиамидином

Структура	$\lambda_{ m max},{ m nm}$	
Сържъри	Хромофор	Комплекс
Ia	373	486
Ib	386	494
IIa	397	417 495
IIb	409	425 527
IIIa	380	478
IIIb	394	512
IV	380	378

Рис. 4. Резонансне формы моноаниона 2,6-бис(4-гидроксибензилиден)-циклогексанона.

Рис. 5. Преимущественные конформации соединений IIIa (a) и Ia (b).

или циклогенсанона) имеют меньшую эффективность ГТГ, чем соответствующие комплексы с хромофорами на основе ацетона, не содержащие циклических центральных фрагментов. Подобное поведение, возможно, связано с меньшим π -сопряжением в диарилиденциклоалканонах по сравнению с соответствующими ациклическими аналогами. Это подтверждается тем, что, согласно данным расчетов методом РМ-3, диарилиденциклоалканоны имеют неплоскую "бананообразную" конформацию, в отличие от почти совершенно плоской конформации ациклических хромофоров (рис. 5), из-за отталкивания оритопротонов фенильных колец от метиленовых протонов циклического вцентрального фрагмента. При этом следует учитывать также значительно более высокую конформационную жесткость диарилиденциклоалканонов по сравнению с их ациклическими аналогами, связанную с невозможностью *s*-цис-транс изомеризации вследствие поворота вокруг простой связи фрагмента О=С-С=С, что приводит к замораживанию неплоской конформации хромофора.

Из данных, приведенных в табл. 2, видно, что более коротковолновые полосы в спектрах поглощения полиамидиновых комплексов хромофоров, относящиеся к молекулярной форме этих комплексов (недепрото-

нированному хромофору), весьма близки по положению максимума (380–410 nm) к длине волны третьей гармоники (355 nm). Таким образом, полиамидиновые комплексы хромофоров в молекулярной форме могут давать вклад в суммарную интенсивность сигнала третьей гармоники вследствие резонансного трехфотонного усиления. По-видимому, именно трехфотонным резонансом объясняется интенсивность сигнала третьей гармоники комплекса хромофора IV с полиламидином. В то же время полиамидиновые комплексы хромофоров в ионной форме, более длинноволновые полосы поглощения которых не имеют хвостов в области 355 nm, вносят вклад в эффективность ГТГ по нерезонансному механизму. Сравнение величин $\chi^{(3)}$ для полиамидиновых комплексов Ib и IV позволяет предположть, что резонансный и нерезонансный вклады в ГТГ сравнимы по величине.

Полученные в данной работе результаты показывают, что низкомолекулярные хромофоры могут быть использованы для получения стабильных полимерных композитных систем, обладающих высокой кубической НЛО-восприимчивостью. При этом применение простых в синтетическом отношении хромофоров позволяет достичь в величин $\chi^{(3)}$ порядка 10^{-12} esu, что уже находится в области значений, получаемых для ряда весьма трудоемких в синтезе полимеров, например политиофенов [8]. Весьма незначительные модификации изученных в данной работе хромофоров (введение дополнительных электронодонорных заместителей, увеличение длины сопряжения путем введения дополнительных С=С-связей) могут значительно повысить эффективность ГТГ-комплексов депротонирумых хромофоров с такими высокоосновными полимерами как полиамидины. Такие исследования проводятся в настоящее время.

Список литературы

- [1] Нелинейные оптические свойства органических молекул и кристаллов / Под ред. Д. Шемлы, Ж. Зисса. Т. 2. Мир, М. (1989). 248 с.
- [2] F. Boehme, L. Haussler, A.V. Yakimansky. Polymer Prep. 40, 2, 1140 (1999).
- [3] B. Vorlander, Ber. 58, 132 (1925).
- [4] T. Hattori, T. Kobayashi. Chem. Phys. Lett. 133, 2, 230 (1987).
- [5] M. Sheik-Bahae, A.A. Said, E.W. Van Stryland. Opt. Lett, 14, 4, 955 (1989).
- [6] K. Kubodera, H. Kobayashi. Mol. Cryst. Liq. Cryst. 182A, 103 (1990).
- [7] J.J.P. Stewart. J. Comput. Chem. **24**, *6*, 791 (1989).
- [8] C.L. Callender, L. Robitaille, M. Leclerc. Opt. Engeniiring 32, 9, 2246 (1993).