Анализ термоэлектрической эффективности твердых растворов *n*-(Bi, Sb)₂ (Te, Se, S)₃ в рамках модели с изотропным механизмом рассеяния

© В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

E-mail: v.kutasov@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 13 апреля 2000 г.)

Проведены исследования термоэлектрических свойств в твердых растворах *n*-типа $Bi_2Te_{3-y}Se_y$ (y = 0.12, 0.3, 0.36), $Bi_{2-x}Sb_xTe_{3-y}Se_y$ (x = 0.08 и 0.12, y = 0.24 и 0.36), $Bi_2Te_{3-z}S_z$ (z = 0.12, 0.21) в температурном интервале 80–300 K в зависимости от концентрации носителей заряда.

Установлено, что наибольшая величина термоэлектрической эффективности Z наблюдалась в твердом растворе $Bi_2Te_{3-y}Se_y$ (y = 0.3), содержащем избыточный Te, при оптимальных концентрациях носителей заряда ($0.35 \cdot 10^{19}$ cm⁻³) в области температур 80–250 К. Увеличение Z в твердом растворе $Bi_2Te_{3-y}Se_y$ по сравнению с $Bi_{2-x}Sb_xTe_{3-y}Se_y$ и $Bi_2Te_{3-z}S_z$ определяется высокой подвижностью μ_0 , ростом эффективной массы m/m_0 при уменьшении температуры, низкой величиной теплопроводности кристаллической решетки κ_L и слабой анизотропией поверхности постоянной энергии в модели с изотропным рассеянием носителей заряда.

Твердые растворы на основе n-Bi₂Te₃ широко используются в качестве n-ветви многокаскадных модулей, обеспечивающих охлаждение до температур ниже 150 K, что требует разработки высокоэффективных термоэлектрических материалов с низкими концентрациями носителей ($n = (3-4) \cdot 10^{18}$ cm⁻³), которые являются оптимальными для низкотемпературной области [1,2]. Поэтому анализ параметра β , определяющего произведение ZT, от которого зависит КПД термогенератора или холодильный коэффициент термоэлектрического охлаждающего устройства, является актуальной задачей

$$ZT \sim \beta = \frac{2(2\pi)^{3/2}}{h^3 e} k_0^{7/2} \left(\frac{m}{m_0}\right)^{3/2} \mu_0 T^{5/2} \kappa_L^{-1}, \quad (1)$$

где Z — термоэлектрическая эффективность, m, μ_0 , κ_L — эффективная масса плотности состояний, подвижность с учетом вырождения и теплопроводность кристаллической решетки соответственно. Величины, входящие в выражение (1), связаны с параметрами поверхности постоянной энергии и механизмами рассеяния носителей заряда, что дает возможность установить связь между термоэлектрической эффективностью и этими параметрами в зависимости от температуры, концентрации носителей заряда и состава твердого раствора.

1. Многодолинная модель

Твердые растворы (Bi, Sb)₂ (Te, Se, S)₃ (пространственная группа $R\bar{3}m$) обладают сильной анизотропией кинетических эффектов (исключение составляет коэффициент термоэдс), что связано с особенностями кристаллической структуры и характером химических связей. Для описания поверхностей постоянной энергии таких материалов используется многодолинная модель

энергетического спектра [3,4], в которой установлена зависимость между компонентами тензоров сопротивления ρ_{ii} , эффекта Холла ρ_{ijk} , магнетосопротивления ρ_{ijk1} и параметрами, определяющими форму эллипсоидов постоянной энергии u, v, w. Параметры u, v, w связаны с компонентами тензора обратных эффективных масс $\overleftrightarrow{\alpha}$

$$u = \alpha_{11}/\alpha_{22}, \quad v = \alpha_{33}/\alpha_{22}, \quad v - w = \alpha_{23}^2/\alpha_{22}^2.$$
 (2)

Угол поворота главных осей (θ) эллипсоидов постоянной энергии относительно кристаллографических осей определяется выражением

$$tg 2\theta = 2\alpha_{23}/(\alpha_{22} - \alpha_{33}).$$
 (3)

Тензор обратных эффективных масс $\overleftrightarrow{\alpha}$ по отношению к кристаллографическим осям определен следующим образом:

$$\overset{\leftrightarrow}{\alpha} = m_0 \overset{\leftrightarrow}{T}(\theta) \overset{\leftrightarrow}{m}{}^{-1} \overset{\leftrightarrow}{T}{}^{-1}(\theta).$$
(4)

Связь между эффективной массой плотности состояний и компонентами тензора эффективных масс в многодолинной модели имеет вид

$$m = N^{2/3} (m_1 m_2 m_3)^{1/3}, (5)$$

где *N* — число долин, *m*₁, *m*₂, *m*₃ — главные компоненты тензора эффективных масс.

При исследовании влияния анизотропии поверхности постоянной энергии на величину термоэлектрической эффективности в модели с анизотропным рассеянием носителей заряда [1,2] было показано, что в твердых растворах $Bi_2Te_{3-y}Se_y$ (0.12 $\leq y \leq 0.36$) при оптимальных концентрациях носителей, близких к концентрации заполнения второй зоны в зоне проводимости, рассеяние носителей близко к изотропному в интервале температур

80 < T < 150 К. Поэтому при оптимальных концентрациях для указанной области температур рассеяние носителей можно рассматривать как изотропное. В таком случае время релаксации зависит только от энергии в виде степенной функции

$$\tau = \tau_0 E^{r_{\rm eff}},\tag{6}$$

где τ_0 — множитель, не зависящий от энергии, $r_{\rm eff}$ — эффективный параметр рассеяния [5], интегрально учитывающий, кроме основного механизма рассеяния на акустических колебаниях кристаллической решетки, влияние других возможных механизмов рассеяния (примесное, межзонное).

2. Термоэдс и электропроводность

Исследование термоэлектрических свойств твердых растворов (Bi, Sb)₂ (Te, Se, S)₃ было проведено на образцах, полученных методом направленной кристаллизации (вертикального зонного выравнивания). Необходимые концентрации носителей в твердом растворе $Bi_2Te_{3-y}Se_y$ (y = 0.12-0.36) были получены при добавлении избыточного Te. В твердом растворе $Bi_{2-x}Sb_xTe_{3-y}Se_y$ (x = 0.08 и 0.12, y = 0.24 и 0.36) кроме избытка Te использовался CdCl₂. Легирование $Bi_2Te_{3-z}S_z$ (z = 0.12, 0.21) проводилось при введении в твердый раствор CdCl₂.

Puc. 1. Температурные зависимости коэффициента термоэдс α (*1*–7) и электропроводности σ (*8*–*14*) в твердых растворах Bi₂Te_{3-y}Se_y, *n*, 10¹⁹ cm⁻³: (*y* = 0.12) *1*, 8 — 0.35, *2*, 9 — 0.8; (*y* = 0.21) *3*, *10* — 0.65; (*y* = 0.3) *4*, *11* — 0.35, *5*, *12* — 0.8; (*y* = 0.36) *6*, *13* — 0.35, *7*, *14* — 0.9.

Puc. 2. Температурные зависимости коэффициента термоэдс α (*1*-6) и электропроводности σ (*7*-*12*) в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃. Bi_{2-x}Sb_xTe_{3-y}Se_y, *n*, 10¹⁹ cm⁻³: (*x* = 0.08, *y* = 0.24) *1*, 7 – 0.7; (*x* = 0.12, *y* = 0.36) *2*, 8 – 0.4; *3*, 9 – 0.7. Bi₂Te_{3-z}S_z, *n*, 10¹⁹ cm⁻³: (*z* = 0.12) *4*, *10* – 0.4, *5*, *11* – 0.7; (*z* = 0.21) *6*, *12* – 0.9.

На рис. 1,2 приведены экспериментальные температурные зависимости коэффициента термоэдс α и электропроводности σ , которые были использованы для определения произведения $(m/m_0)^{3/2}\mu_0$, входящего в выражение (1), с учетом $r_{\rm eff}$.

$$\mu_0 \left(\frac{m}{m_0}\right)^{3/2} = \frac{\sigma \Gamma(r+3/2)}{2e(2\pi m_0 k_0 T/h^2)^{3/2} F_{r+1/2}(\eta)},$$
 (7)

где $F(r, \eta)$ и $\Gamma(r + 3/2)$ — интеграл Ферми и гаммафункция, η — приведенный уровень Ферми.

Как следует из рис. 1,2, температурная зависимость коэффициента термоэдс α ослабевает в низкотемпературной области ($80 < T < 150 \,\mathrm{K}$) с ростом количества замещенных атомов и при увеличении концентрации носителей заряда от 0.25 до $0.9 \cdot 10^{19} \,\mathrm{cm^{-3}}$ в исследованных твердых растворах. На ослабление зависимости $\alpha = f(T)$ указывает снижение угловых коэффициентов $s_1 = d \ln \alpha/d \ln T$ (см. табл. 1 и рис. 1, 2).

Температурные зависимости электропроводности σ в области низких температур также ослабевают (угловые коэффициенты $|s_2| = d \ln \sigma_0/d \ln T$ уменьшаются, где σ_0 — электропроводность с учетом вырождения, рассчитанная для r_{eff} , табл. 1) с ростом концентрации n и увеличением количества замещенных атомов в твердом растворе (рис. 1, 2) вследствие увеличения числа рассе-ивающих центров.

Зависимости параметра $(m/m_0)^{3/2}\mu_0$ от температуры представлены на рис. 3. В области низких температур в твердом растворе $Bi_2Te_{3-y}Se_y$ (y = 0.12-0.36) наблюдалось снижение величин $(m/m_0)^{3/2}\mu_0$ с ростом концентрации носителей заряда *n*, связанное с уменьшением подвижности μ_0 (кривые 1, 4, 6 и 2, 5, 7 на рис. 3). При увеличении концентрации *n* от 0.25 до $0.9 \cdot 10^{19} \,\mathrm{cm}^{-3}$ в твердых растворах в соответствии с нашими данными, полученными ранее [12], подвижность μ_0 уменьшается значительно сильнее, чем величина $(m/m_0)^{3/2}\mu_0$. Такой характер изменения величины $(m/m_0)^{3/2}\mu_0$ от *n* определяется концентрационной зависимостью усредненной эффективной массы m/m_0 , согласно которой m/m_0 возрастает не только с увеличением концентрации носителей [6], но и при уменьшении температуры от 120 до 80 K [2].

Рис. 3. Температурные зависимости параметра $(m/m_0)^{3/2}\mu_0$ в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃. Bi₂Te_{3-y}Se_y, $n, 10^{19}$ cm⁻³: (y = 0.12) 1 - 0.35, 2 - 0.8; (y = 0.21)3 - 0.65; (y = 0.3) 4 - 0.35, 5 - 0.8; (y = 0.36) 6 - 0.35, 7 - 0.9. Bi_{2-x}Sb_xTe_{3-y}Se_y, $n, 10^{19}$ cm⁻³: (x = 0.08, y = 0.24)8 - 0.7; (x = 0.12, y = 0.36) 9 - 0.4; 10 - 0.7. Bi₂Te_{3-z}S_z, $n, 10^{19}$ cm⁻³: (z = 0.12) 11 - 0.4, 12 - 0.7; (z = 0.21)13 - 0.9.

Таблица 1. Угловые коэффициенты температурных зависимостей $s_1 = d \ln \alpha/d \ln T$, $|s_2| = d \ln \sigma_0/d \ln T$, $|s_3| = d \ln ((m/m_0)^{3/2} \mu_0)/d \ln T$, $|s_4| = d \ln \kappa_L/d \ln T$, $s_5 = d \ln \beta/d \ln T$ в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ для T < 150 K

Bi ₂ Te _{3-y} Se _y										
у		$n 10^{19}, \mathrm{cm}^{-3}$	s_1	<i>s</i> ₂	\$3	\$4	\$5			
0.12		0.35	0.86	1.65	1.7	0.75	1.61			
		0.8	0.83	1.55	1.66	0.75	1.36			
0.21		0.65	0.69	1.51	1.61	0.75	1.56			
0.3		0.35	0.55	1.61	1.75	0.73	1.56			
		0.65	0.53	1.51	1.57	0.7	1.5			
0.36		0.35	0.5	1.42	1.63	0.72	1.52			
		0.9	0.48	1.34	1.55	0.71	1.45			
Z		Bi ₂ Te _{3-z} S _z								
0.12		0.3	0.76	1.38	1.49	0.55	1.5			
		0.7	0.58	1.08	1.35	0.49	1.47			
0.21		0.9	0.67	0.93	1.26	0.46	1.35			
x	у	$Bi_{2-x}Sb_xTe_{3-y}Se_y$								
0.08	0.24	0.7	0.51	1.19	1.4	0.67	1.66			
0.12	0.36	0.4	0.46	0.99	1.22	0.71	1.68			
		0.7	0.43	0.87	1.03	0.69	1.61			

Наибольшее значение параметра $(m/m_0)^{3/2}\mu_0$ для низкотемпературной области наблюдалось в твердом растворе Bi₂Te_{3-y}Se_y (x = 0.3) (кривая 4 на рис. 3). Образцу с концентрацией $n \approx 0.35 \cdot 10^{19}$ сm⁻³ соответствует также высокий угловой коэффициент $|s_3| = d \ln(m/m_0)^{3/2}\mu_0/d \ln T$ (см. табл. 1).

В образцах твердого раствора Bi₂Te_{3-z}S_z наблюдалось большее снижение параметра $(m/m_0)^{3/2}\mu_0$ при увеличении концентрации *n* по сравнению с Bi₂Te_{3-y}Se_y (кривые 8 и 9 на рис. 3). Снижение $(m/m_0)^{3/2}\mu_0$ происходит вследствие значительного уменьшения подвижности с ростом *n* и снижением m/m_0 с уменьшением температуры от 200 до 80 К. В твердых растворах Bi_{2-x}Sb_xTe_{3-y}Se_y при низких температурах слабое снижение $(m/m_0)^{3/2}\mu_0$ (в отличие от Bi₂Te_{3-z}S_z) при увеличении концентрации *n* от 0.4 до $0.7 \cdot 10^{19}$ ст⁻³ определяется температурной зависимостью эффективной массы, m/m_0 , которая возрастает с уменьшением температуры [6–8].

3. Теплопроводность кристаллической решетки

Экспериментальные величины теплопроводности κ использовались для расчета теплопроводности кристаллической решетки κ_L (рис. 4). Для определения электронной теплопроводности κ_e при расчете числа Лоренца $L(r_{\rm eff}, \eta)$ учитывался эффективный параметр рассеяния

$$L = \left(\frac{k}{e}\right)^2 \left[\frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \frac{(r+5/2)^2F_{r+3/2}^2(\eta)}{(r+3/2)^2F_{r+1/2}^2(\eta)}\right].$$
(8)

Использование $r_{\rm eff}$ позволяет учесть не только изменение механизмов рассеяния в твердых растворах, но косвенно и влияние сложной зонной структуры на теплопроводность кристаллической решетки (с помощью концентрационной и температурной зависимости $r_{\rm eff}$ [5]).

Решеточная теплопроводность к_L слабо уменьшается в твердом растворе Bi₂Te_{3-v}Se_v с увеличением у от 0.12 до 0.36 при сравнении образцов с низкими концентрациями носителей (кривые 1, 4, 6 на рис. 4). Слабое изменение κ_L от количества замещенных атомов Те связано с тем, что небольшого количества атомов Se достаточно для поглощения практически всех коротковолновых фононов, в результате чего увеличение атомов Se не может приводить к значительному снижению κ_L [9]. При более высоких концентрациях носителей снижение κ_L при увеличении у в твердом растворе $Bi_2Te_{3-\nu}Se_{\nu}$ еще более ослабевает (кривые 1 и 2,4 и 5,6 и 7 на рис. 4), так как при большой концентрации введенных примесных атомов области искажений кристаллической решетки могут перекрываться. Угловые коэффициенты $|s_4| = d \ln \kappa_L / d \ln T$ (см. табл. 1) также слабо уменьшаются с ростом у в твердом растворе Bi₂Te_{3-y}Se_y.

Рис. 4. Температурные зависимости теплопроводности кристаллической решетки κ_L в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃. Обозначения образцов на рис. 4 в соответствии с рис. 3.

В твердом растворе $Bi_2Te_{3-z}S_z$ (кривые 8–13 на рис. 4) величины κ_L и угловые коэффициента $|s_4|$ снижаются по сравнению с $Bi_2Te_{3-y}Se_y$ (кривые 1–7). Снижение κ_L происходит вследствие того, что атомы S сильнее рассеивают фононы, чем Se, при этом искажения кристаллической решетки Bi_2Te_3 больше при замещении S \rightarrow Te, чем при замещении Se \rightarrow Te из-за различия ковалентных радиусов атомов S и Se [9].

В твердых растворах $Bi_{2-x}Sb_xTe_{3-y}Se_y$ (кривые 8-10 на рис. 4), где замещение атомов (Sb \rightarrow Bi, Se \rightarrow Te) происходит в обеих подрешетках Bi_2Te_3 , наблюдается дальнейшее снижение κ_L по сравнению с твердыми растворами $Bi_2Te_{3-y}Se_y$ и $Bi_2Te_{3-z}S_z$, где замещение атомов происходит только в одной из подрешеток (кривые 8-10 на рис. 4). Такое уменьшение κ_L может быть связано с изменением концентрации "антиструктурного" Bi при образовании твердого раствора $Bi_{2-x}Sb_xTe_{3-y}Se_y$ [9].

Уменьшение κ_L с ростом концентрации носителей в твердом растворе $\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$, содержащем избыточный Te, связано с рассеянием фононов на заряженных примесях при увеличении числа рассеивающих центров. Уменьшение κ_L в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$ и $\text{Bi}_2\text{Te}_{3-z}\text{Se}_z$, содержащих кроме избыточного Te в качестве легирущей добавки CdCl₂, объясняется более сильным рассеянием на заряженных примесях. Снижение κ_L при увеличении концентрации носителей также может быть связано с влиянием второй зоны в зоне проводимости твердых растворов [10] вследствие дополнительного переноса тепла носителями двух типов, но одного знака.

4. Термоэлектрическая эффективность

Данные по температурным зависимостям $(m/m_0)^{3/2} \mu_0$ и κ_L позволяют рассчитать параметр β (рис. 5), наибольшее значение которого при низких температурах наблюдалось в твердом растворе $Bi_2Te_{3-y}Se_y$ (y = 0.3) при оптимальной для низких температур концентрации $n = 0.35 \cdot 10^{19} \,\mathrm{cm}^{-3}$ (кривая 4 на рис. 5). Увеличение параметра В, а следовательно, и величины термоэлектрической эффективности Z (кривая 4 на рис. 6) при x = 0.3, связано с высокой подвижностью, увеличением эффективной массы при уменьшении температуры в области T < 150 К и низкой величиной решеточной теплопроводности κ_L (кривая 4 на рис. 4). Слабое снижение κ_L при y = 0.36 не компенсирует уменьшение параметра $(m/m_0)^{3/2}\mu_0$, что приводит к уменьшению величины β и, следовательно, термоэлектрической эффективности Z (кривые 6 на рис. 5, 6).

Следует отметить, что в твердых растворах $(Bi, Sb)_2$ $(Te, Se, S)_3$ угловые коэффициенты температурных зависимостей всех исследованных величин (см. табл. 1) различаются для низко- (T < 150 K) и высокотемпературных областей (150 < T < 250 K), что может быть связано с изменением вклада электрон-

Рис. 5. Температурные зависимости параметра β в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃. Обозначения образцов на рис. 5 в соответствии с рис. 3.

фононного взаимодействия в различных температурных интервалах [11]. Уменьшение углового коэффициента $s_5 = d \ln \beta / d \ln T$ при низких температурах по сравнению с высокими приводит к увеличению термоэлектрической эффективности.

Несмотря на снижение κ_L (кривые 8–13 на рис. 4), в твердых растворах $\text{Bi}_2\text{Te}_{3-z}\text{S}_z$ (z = 0.12, 0.21) и $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$ (x = 0.08, y = 0.24) параметр β и термоэлектрическая эффективность Z (кривые 8–13 на рис. 5,6) существенно ниже, чем в $\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$, вследствие значительного уменьшения подвижности.

5. Параметры эллипсоидов постоянной энергии

Выражение (5) совместно с отношениями эффективных масс m_i/m_j [4] дает возможность определить главные оси эллипсоидов постоянной энергии (m_1, m_2, m_3) по отношению к кристаллографическим осям. Для этого были использованы данные по температурным зависимостям отношений компонентов тензоров эффективных

масс m_i/m_j в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃, полученные нами ранее [7,8]. При расчете m_i ось Z или (3) была направлена по оси третьего порядка, оси X (1) направлены вдоль осей второго порядка (бинарные направления), оси Y (2) лежат в плоскостях отражения (биссекторные направления).

В табл. 2 приведены отношения компонентов тензоров эффективных масс m_1, m_2, m_3 в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃ при T = 77 и 150 K, рассчитанные в соответствии с (5). Величины угла поворота (θ) главных осей эллипсоидов относительно кристаллографических осей (в табл. 2 не приведены) составляют 40–44° для всех твердых растворов, кроме Bi₂Te_{3-y}Se_y (y = 0.12) с низкой концентрацией $n = 0.25 \cdot 10^{19}$ сm⁻³, где $\theta \approx 22^{\circ}$, что указывает на отсутствие влияния второй зоны в зоне проводимости твердого раствора [10]. По данным m_2 и m_3 из табл. 2 были построены проекции на плоскость *ZY*

Рис. 6. Температурные зависимости термоэлектрической эффективности Z в твердых растворах (Bi, Sb)₂ (Te, Se, S)₃. Обозначения образцов на рис. 6 в соответствии с рис. 3.

$Bi_2Te_{3-y}Se_y$											
No	у		1019 -3	$T = 77, 150 \mathrm{K}$							
1 12			$n \cdot 10^{15}$, cm ³	m_1	m_2	<i>m</i> ₃					
1	0.12		0.25	0.041	0.22	0.23					
				0.043	0.23	0.2					
2			0.7	0.027	0.94	0.17					
				0.03	1.14	0.16					
3	0.3		0.4	0.119	0.49	0.4					
				0.067	0.85	0.3					
4			1.1	0.055	1.26	0.25					
				0.056	2.15	0.11					
_	x	у	$Bi_{2-x}Sb_xTe_{3-y}Se_y$								
5	0.2	0.3	1.1	0.05	0.34	0.2					
				0.051	0.46	0.24					
6	0.4	0.6	0.8	0.017	0.17	0.07					
				0.015	0.15	0.05					
	z		$Bi_2Te_{3-z}S_z$								
7	0.12		0.4	0.049	0.48	0.41					
				0.615	0.52	0.23					
8			1.3	0.068	0.83	0.17					
				0.04	1.2	0.08					
9	0.21		0.4	0.06	0.48	0.51					
				0.04	1	0.21					

Таблица 2. Параметры эллипсоидов постоянной энергии в твердых растворах *n*-(Bi, Sb)₂ (Te, Se, S)₃

Примечание. Для каждой концентрации носителей в верхних строках приведены значения $m_{,1}$, m_2 , m_3 при 77 K, в нижних — при 150 K.

одного из шести эквивалентных эллипсоидов постоянной энергии для зоны проводимости твердых растворов $(Bi, Sb)_2$ (Te, Se, S)₃ (рис. 7).

В исследованных материалах наибольшее сжатие эллипсоидов наблюдается в бинарном направлении (X). В твердом растворе $Bi_2Te_{3-\nu}Se_{\nu}$ при T = 77 K для низких концентраций носителей эллипсоиды слабо вытянуты относительно оси Y' с учетом поворота на угол θ относительно биссекторной кристаллографической оси У (эллипсоиды 1, 3, сплошные линии на рис. 7). С понижением температуры эллипсоиды вытягиваются по оси У' (по биссекторной оси *Y* с поворотом на угол θ), оставаясь сжатыми по бинарной оси Х' (эллипсоиды 1, 3, штриховые линии на рис. 7). При указанных концентрациях носителей анизотропия рассеяния в твердом растворе Ві₂Те_{3-у}Se_у, согласно данным [1,2], незначительная. Аналогичная ориентация эллипсоидов и слабое вытягивание по оси Y' характерны и для твердого раствора Bi₂Te_{3-z}S_z при низких концентрациях $(0.4 \cdot 10^{19} \, \mathrm{cm}^{-3})$ (эллипсоиды 7,8 на рис. 7). Однако анизотропия рассеяния в $Bi_2Te_{3-z}S_z$ выше, чем в $Bi_2Te_{3-y}Se_y$ при близких концентрациях носителей.

С увеличением концентрации ($n \ge 0.7 \cdot 10^{19} \,\mathrm{cm}^{-3}$) эллипсоиды становятся более вытянутыми по оси Y', оставаясь сжатыми по бинарной оси X' (эллипсоиды 2, 4, 8, 9 на рис. 7). Такое изменение параметров эллипсоидов, полученное в модели с изотропным рассеянием носителей заряда, указывает на увеличение анизотропии поверхности постоянной энергии.

Следует отметить, что для высоких концентраций n в твердом растворе $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$ наблюдалось меньшее вытягивание эллипсоидов по Y' (эллипсоиды 5, 6 на рис. 7) по сравнению с $\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$ и $\text{Bi}_2\text{Te}_{3-z}\text{S}_z$. Таким образом, вытягивание эллипсоидов в зоне проводимости $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$ происходит при более высоких концентрациях носителей, чем в $\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$ и $\text{Bi}_2\text{Te}_{3-z}\text{S}_z$, что связано с изменением массовых параметров m_1, m_2, m_3 (см. табл. 2) в зависимости от концентрации и состава твердого раствора и влиянием анизотропии рассеяния носителей.

Puc. 7. Проекции одного из шести эквивалентных эллипсоидов постоянной энергии на плоскость отражения *YZ* для зоны проводимости твердых растворов (Bi, Sb)₂ (Te, Se, S)₃ при T = 77 K (сплошные линии) и T = 150 K (штриховые линии). Bi₂Te_{3-y}Se_y, *n*, 10¹⁹ cm⁻³: (y = 0.12) I - 0.25, 2 - 0.7; (y = 0.3) 3 - 0.4, 4 - 1.1. Bi_{2-x}Sb_xTe_{3-y}Se_y, *n*, 10¹⁹ cm⁻³: (x = 0.2, y = 0.3) 5 - 1.1; (x = 0.4, y = 0.6) 6 - 0.8. Bi₂Te_{3-z}S_z, *n*, 10¹⁹ cm⁻³: (z = 0.12) 7 - 0.4, 8 - 1.3; (z = 0.21) 9 - 0.4.

Результаты исследований термоэлектрической эффективности Z и данные об изменениях параметров эллипсоидов постоянной энергии для твердых растворов $(Bi, Sb)_2$ (Te, Se, S)₃ позволяют провести совместный анализ этих величин. Наибольшие величины Z наблюдались в твердом растворе $Bi_2Te_{3-v}Se_v$ (v = 0.3), содержащем избыточный Те (кривая 4 на рис. 6) при оптимальных концентрациях носителей $(0.35 \cdot 10^{19} \text{ cm}^{-3})$ не только для низкотемпературной области, но и при более высоких температурах вплоть до 250 К. При таких концентрациях *n* для твердого раствора Bi₂Te_{3-v}Se_v применима однозонная модель зоны проводимости [10], эллипсоиды постоянной энергии слабо вытянуты относительно оси У с поворотом на угол θ и анизотропия рассеяния носителей является более низкой по сравнению с твердыми растворами при у = 0.12 и 0.36. При более высоких концентрациях носителей, когда величина Z уменьшается (кривая 5 на рис. 6), параметры формы эллипсоидов изменяются (эллипсоиды вытягиваются), анизотропия поверхности постоянной энергии увеличивается и анизотропия рассеяния носителей также возрастает.

В твердом растворе Bi₂Te_{3-z}S_z при достаточно низких концентрациях носителей ($n = 0.4 \cdot 10^{19} \,\mathrm{cm}^{-3}$) термоэлектрическая эффективность Z (кривая 11 на рис. 6) ниже, чем в $Bi_2Te_{3-v}Se_v$, при этом значительных изменений в параметрах формы эллипсоидов в этих твердых растворах не наблюдалось (эллипсоиды 3 и 7 на рис. 7, табл. 2). Такое снижение величины Z можно объяснить различием в анизотропии рассеяния носителей в Bi₂Te_{3-v}Se_v и Bi₂Te_{3-z}S_z. В результате исследования гальваномагнитных свойств твердых растворов Bi2(Te, Se, S)3 в модели с анизотропным рассеянием [1,2] было показано, что в $Bi_2Te_{3-y}Se_y$ (y = 0.3) в области температур 80 T 🗧 150 К при концентрации $n = 0.35 \cdot 10^{19} \, {\rm cm}^{-3}$ величины отношений компонентов тензора времени релаксации составляют: $au_{22}/ au_{11} \approx (0.95{-}1.2)$ и $au_{33}/ au_{11} \approx (0.65{-}0.9)$ при изменении Т от 80 до 150 К. Близкая к 1 величина отношения τ_{22}/τ_{11} указывает на слабую анизотропию рассеяния в твердом растворе $Bi_2Te_{3-y}Se_y$ (y = 0.3) как в биссекторном, так и в бинарном направлениях. Незначительное различие в отношениях τ_{22}/τ_{11} и τ_{33}/τ_{11} (не более 30%) связано со слабой анизотропией в плоскости отражения (YZ). В твердом растворе $Bi_2Te_{3-z}S_z$ $(z = 0.21, n = 0.4 \cdot 10^{19} \text{ cm}^{-3}, 80 \le T \le 150 \text{ K})$ отношение $\tau_{22}/\tau_{11} \approx (0.2-0.5)$, что говорит о более высокой анизотропии рассеяния по сравнению с Bi2Te3-vSev в бинарном направлении. Таким образом, на величину термоэлектрической эффективности в исследованных твердых растворах большее влияние оказывает увеличение анизотропии рассеяния носителей заряда, чем изменение параметров формы эллипсоидов постоянной энергии.

Список литературы

- M.V. Vedernikov, V.A. Kutasov, L.N. Luk'yanova, P.P. Konstantinov. Proc. of the XVII Int. Conf. Thermoelectrics. Nagoya, Japan (1998). P. 121.
- [2] В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 41, 2, 187 (1999).
- [3] J.R. Drabble, R.D. Groves, R. Wolfe. Proc. Phys. Soc. 71, 3, 430 (1958).
- [4] L.P. Caywood, G.R. Miller. Phys. Rev. 2, 8, 3210 (1970).
- [5] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 26, 8, 2501 (1984).
- [6] В.А. Кутасов, Л.Н. Лукьянова. ФТП 23, 4, 652 (1989).
- [7] V.A. Kutasov, L.N. Luk'yanova. Phys. Stat. Sol. (b) 154, 669 (1989).
- [8] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 29, 10, 2966 (1987).
- [9] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. Наука, М. (1972). 320 с.
- [10] H. Kohker, W. Haigis, A. von Middendorf. Phys. Stat. Sol. (b) 78, 2, 637 (1976).
- [11] Г.Н. Иконникова, В.А. Кутасов, Л.Н. Лукьянова. ФТТ 32, 11, 3350 (1990).