Особенности теплопроводности LuAgCu₄

© А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, Х. Мисерек*, Я. Муха*, А. Ежовский*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Институт низких температур и структурных исследований Польской академии наук,

53-529 Вроцлав, Польша

E-mail: Igor.Smirnov@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 30 марта 2000 г.)

В интервале температур 4.2–300 К измерены удельное электросопротивление и теплопроводность LuAgCu₄. При $T \gtrsim 100$ К обнаружен дополнительный вклад в теплопроводность, вероятнее всего от биполярной составляющей теплопроводности. На основании этих данных делается заключение, что LuAgCu₄, по-видимому, является полуметаллом.

Работа проводилась в рамках двустороннего соглашения между Российской и Польской академиями наук и выполнена при финансовой поддержке Российского фонда фундаментальных исследований по гранту № 99-02-18078.

Настоящая работа является продолжением цикла исследований теплопроводности интерметаллических соединений LnMCu₄ (где Ln — редкоземельный, а M — переходный металл), кристаллизующихся в гранецентрированной кубической решетке типа AuBe₅ (структура C15b, пространственная группа $F\bar{4}$ 3 $m(T_d^2)$) [1,2].

Соединения LnMCu₄ обладают интересными и порою весьма необычными физическими свойствами. Наибольший интерес в последние годы у экспериментаторов и теоретиков вызвали два представителя этого класса материалов: YbInCu₄ и YbAgCu₄. Первый привлек внимание из-за наличия в нем при $T_{\nu} \sim 40 - 80 \,\mathrm{K}$ и атмосферном давлении изоструктурного фазового перехода первого рода следующего вида. При T > T_v YbInCu₄ представляет собой кюри-вейссовский парамагнетик (состояние с локализованными магнитными моментами), а при T < T_v — паулиевский парамагнетик (немагнитное состояние ферми-жидкости). YbInCu₄ — соединение с переменной валентностью редкоземельного иона, которое в зарубежной литературе получило название "light heavy-fermion system". В [1,3,4] суммированы литературные ссылки большинства экспериментальных и теоретических работ, посвященных YbInCu₄.

YbAgCu₄ является представителем немагнитных тяжело-фермионных соединений ("moderately heavy-fermion system"), обладающих свойствами, характерными для концентрированных Кондо-решеток [4-6]. Этому соединению посвящено в последние годы огромное число работ. Для выделения в YbAgCu4 решеточных, электрических и магнитных эффектов (теплоемкость[4,7-9], магнитная восприимчивость [4,10], рассеяние нейтронов [19], электропроводность [8,12], L_{III} — рентгеновские спектры поглощения [4,13,14], объемный коэффициент расширения [13], фотоэмиссионное XPS-спектры [15]) в качестве реперного материала использовался LuAgCu₄, который имеет одинаковую с YbAgCu₄ структуру и близкие параметры решетки. Уb и Lu являются соседями в Периодической системе элементов Д.И. Менделеева.

Кроме перечисленных выше параметров, исследованных в LuAgCu₄, в литературе имеются данные об этом соединении для постоянной кристаллической решетки [4], величин γ и β в зависимости $C = \gamma T + \beta T^2$ для теплоемкости (по данным различных исследователей, γ лежит в интервале от 8.7 до 11 mJ/mol·K [4,7,8,13], а β — от 0.55 до 0.58 mJ/K⁴ · mol [7,8]), температуры Дебая Θ (от 205 до 257 К [4,8,12]), постоянной Холла [4,13]. Имеются сведения по расчету электронной зонной структуры [17,18]. К сожалению, нам не удалось найти в литературе данных о теплопроводности Однако они могут представлять интерес LuAgCu₄. для разных направлений исследований. Они необходимы для проведения термодинамических расчетов, оценки тепловых режимов при росте монокристаллов, их можно было бы использовать в качестве репера при анализе данных по теплопроводности YbAgCu₄. Из анализа электронной составляющей теплопроводности LuAgCu₄ можно получить дополнительные сведения об особенностях электронной зонной структуры этого соединения.

Мы провели в интервале температур 4.2–300 К измерения теплопроводности (\varkappa_{tot}) и удельного электросопротивления (ρ_{tot}) поликристаллического литого образца LuAgCu₄. При синтезе LuAgCu₄ использовались Lu марки 0, Ад чистоты 99.99% и Cu марки ОСЧ ВЗ. Компоненты сплава в стехиометрическом соотношении переплавлялись в откачанном до 10^{-4} mm Hg тонкостенном (толщина стенок ~ 0.1 mm) заваренном танталовом контейнере. Плавление образцов проводилось в высокочастотной печи. Полученный слиток отжигался в течение 75 часов при температуре 800°С. Более подробно методика приготовления соединений на основе РЗЭ приведена в [19,20].

Исследованный образец LuAgCu₄ проходил рентгеноструктурный анализ на установке ДРОН-2 (в Cu K_{α} -излучении). Определялась постоянная кристаллической решетки. Она оказалась равной 7.070(4) Å. По имеющимся литературным данным [4] величина *а* в LuAgCu₄ со-

ставляет 7.094 Å. В [4] проводился анализ данных для постоянных решеток ряда соединений LnMCu₄, где Ln — Yb и Lu, a M — Ag, Au, In, Zn, Cd, Tl, Mg. Рассматривалось изменение параметра $B = \frac{a(\text{YbMCu}_4) - a(\text{LuMCu}_4)}{a(\text{LuMCu}_4)}$ для различных М. За исключением пары YbAgCu₄-LuAgCu₄ параметр В был положителен (а лютециевых соединений всегда меньше, чем иттербиевых, что коррелирует с изменением ионных радиусов этих элементов). Лишь для пары YbAgCu₄-LuAgCu₄ параметр В в [4] оказался отрицательным (B = -0.155%). Авторы [4] не смогли аргументированно объяснить обнаруженную аномалию. Для ее объяснения им пришлось сделать достаточно экзотические предположения о характере зонной структуры LuAgCu₄. При расчетах параметра В в [4] в YbAgCu₄ использовалось значение a = 7.083 Å (данные для a YbAgCu₄, согласно многочисленным литературным данным, лежат в интервале 7.054–7.087 Å [5,6,11,16,17,21–26]), а для LuAgCu₄ a = 7.094 Å [4]. Нам не удалось найти в литературе другой работы, кроме [4], в которой была бы измерена а в LuAgCu₄.

Если воспользоваться полученным значением a для LuAgCu₄ и a для YbAgCu₄ из [4], то параметр B будет положительным и равным 0.183%. Согласно [4], значения B, например для пар YbZnCu₄–LuZnCu₄, YbInCu₄–LuInCu₄ и YbCdCu₄–LuCdCu₄, равны соответственно 0.171, 0.140 и 0.168%. Таким образом, никакой аномалии, обнаруженной в [4] для пары YbAgCu₄–LuAgCu₄, по-видимому, не существует. Вероятно, полученное значение для a LuAgCu₄ в [4] по каким-то причинам было завышено.

Общие теплопроводность и электросопротивление \varkappa_{bot} и ρ_{tot} измерялись на установке, аналогичной [26].

На рис. 1 приведены наши данные и данные [12] для $\rho_{tot}(T)$ образцов LuAgCu₄. При $T \gtrsim 25$ К ρ_{tot} линейно зависит от температуры, что характерно для металлов (и полуметаллов). При $T \lesssim 25$ К (до 4.2 К) $\rho_{tot} \simeq \rho_0$

Рис. 1. Температурная зависимость ρ_{tot} . *I* — наши данные, *2* — из [12].

Рис. 2. Температурная зависимость \varkappa_{tot} исследованного образца LuAgCu₄.

 $(\rho_0$ — остаточное электросопротивление). Как видно из рис. 1, ρ_0 для исследованного нами образца оказалось больше, чем для образца из [12].

На рис. 2 приведены данные для $\varkappa_{tot}(T)$ LuAgCu₄. Для металла \varkappa_{tot} можно записать в виде

$$\varkappa_{\rm tot} = \varkappa_{ph} + \varkappa_e, \tag{1}$$

где \varkappa_{ph} и \varkappa_e — соответственно решеточная и электронная составляющие теплопроводности. Согласно классической теории для теплопроводности металлов [27,28] \varkappa_e подчиняется закону Видемана–Франца и записывается в виде

$$\varkappa_e = LT/\rho_{\rm tot},\tag{2}$$

где L — число Лоренца. Для средних температур в "чистых" образцах, а также для низких и высоких температур в "грязных" образцах металлов $L = L_0$, где L_0 — зоммерфельдовское значение числа Лоренца ($L_0 = 2.45 \cdot 10^{-8} \text{ W}\Omega/\text{K}^2$). Исследованный нами образец LuAgCu₄ имеет достаточно большое значение ρ_0 . Данный факт указывает на то, что мы имеем дело с не очень "чистым" металлом, и, таким образом, для всей исследованной нами области температур можно считать $L = L_0$.

На рис. 3 приведены данные для \varkappa_{ph} , полученные из (1) и (2). При вычислении \varkappa_e полагалось, что $L = L_0$. Как видно из рисунка, в области низких температур $\varkappa_{ph} \sim T^{1.6}$, а в интервале 30–100 К $\varkappa_{ph} \sim T^{-0.5}$. Такие

Рис. 3. Зависимость \varkappa_{ph} от температуры исследованного образца LuAgCu₊. При расчете \varkappa_e полагалось, что $L = L_0$.

температурные зависимости для \varkappa_{ph} характерны для дефектных материалов. "Дефектность" исследованного нами образца, вероятно, не связана с чистотой исходных материалов, использованных при синтезе LuInCu₄, а может возникнуть за счет замещения в решетке мест Lu на Ag или Ag на Cu, как это имело место в YbInCu₄, в котором наблюдавшееся на эксперименте "аморфноподобное" поведение $\varkappa_{ph}(T)$ при $T > T_v$ [1] связано либо с замещением в решетке мест Yb на In [29], либо In на Cu [30].

При T > 100 К в LuAgCu₄ наблюдается отступление от зависимости $\varkappa_{ph} \sim T^{-.05}$. \varkappa_{ph} достаточно сильно возрастает с ростом температуры. Такое поведение $\varkappa_{ph}(T)$ можно было бы объяснить появлением при $T \gtrsim 100$ К биполярной составляющей теплопроводности (\varkappa_{bip}), характерной для полуметаллов [2,27,32]. Однако такое заключение не согласуется с имеющимися в литературе данными по измерению постоянной Холла [4,13] и теоретическими расчетами зонной структуры LuAgCu₄ [17,18], из которых следует, что это соединение, по-видимому, является металлом (а не полуметаллом). Как можно еще объяснить (кроме предложенной выше картины полуметалла и появления $\varkappa_{\rm bip}$) обнаруженное увеличение \varkappa при $T \gtrsim 100 \,\rm K$ в металле LuAgCu₄?

Нам не удалось связать его с какими-либо эффектами, возникающими в этом интервале температур у решеточной составляющей теплопроводности. Остается предположить, что оно может быть обусловлено ошибками при расчете \varkappa_e , а именно что в законе Видемана–Франца $L \neq L_0$.

Рассмотрим несколько вариантов, при которых L может быть не равно L_0 .

1. Для того чтобы "эффект увеличения" \varkappa для LuAgCu₄ отсутствовал, необходимо, чтобы при $T \gtrsim 100 \text{ K}$ *L* было больше L_0 . В металлах это можно наблюдать в случае межзонного взаимодействия тяжелых и легких носителей тока в пересекающихся подзонах, образующих, например, зону проводимости, когда тяжелая зона, в которой располагается уровень Ферми, по энергии лежит выше легкой зоны [27,31,32].

Однако такая картина для LuAgCu₄ вряд ли имеет место, поскольку невозможно предположить, что в достаточно широком интервале температур (4.2–100 K) $L = L_0$, а при $T \gtrsim 100$ K $L > L_0$. Такое поведение L(T) ни для одного материала в литературе пока что не наблюдалось и не должно следовать из рассмотренной выше модели [31].

2. Возможно, что во всем исследованном интервале температур $L \neq L_0$. Для металлов при температурах выше и ниже температуры Дебая $\Theta L/L_0$ можно представить в виде [32–34]

$$L/L_0 = \left[\frac{\rho_0}{4A_0} + \left(\frac{T}{\Theta}\right)^5 I_5\left(\frac{\Theta}{T}\right)\right] / \left[\frac{\rho_0}{4A_0} + \chi\left(\frac{T}{\Theta}, \frac{D}{\xi}\right)\right],\tag{3}$$

где ρ_0 — остаточное удельное электросопротивление,

$$\chi\left(\frac{T}{\Theta},\frac{D}{\xi}\right) = \left(\frac{T}{\Theta}\right)^{5} \left\{ \left[1 + \frac{3}{2\pi^{2}} \cdot \frac{\xi}{D} \left(\frac{\Theta}{T}\right)^{2}\right] I_{5}\left(\frac{\Theta}{T}\right) - \frac{1}{2\pi^{2}} I_{7}\left(\frac{\Theta}{T}\right) \right\},$$
(4)

где ξ — энергия Ферми для носителей тока, $I_5(\Theta/T)$ и $I_7(\Theta/T)$ — интегралы, табулированные в [35,36], A_0 — постоянная, включающая в себя константу взаимодействия электронов с решеткой и зависящая от постоянной решетки, энергии Ферми, массы атома, температуры Дебая. D — также постоянная. D/ξ и A_0 очень приближенно можно оценить из следующих соотношений [32,34]:

$$D/\xi = 2^{-1/3} \cdot N_a^{-2/3},\tag{5}$$

$$ho_i =
ho_{
m tot} -
ho_0 = rac{A_0 T}{\Theta}$$
 (при $T/\Theta \gtrsim 0.6),$ (6)

где N_a — число свободных электронов на атом, ρ_i — часть удельного электросопротивления, обусловленная рассеянием на колебаниях решетки.

Рис. 4. Зависимость L/L_0 от температуры для LuAgCu₄. Расчет согласно [32-34].

Рис. 5. Температурная зависимость \varkappa_{ph} для LuAgCu₄ при различных способах определения \varkappa_e . 1 — при $L = L_0$, 2 — с помощью данных для L из рис. 4.

Проведенная с помощью (3)–(6) весьма приблизительная оценка величины L/L_0 для исследованного нами образца LuAgCu₄ приведена на рис. 4. При расчетах для температуры Дебая было взято значение 257 К [4]. Как видно из рис. 4, для интервала температур 25–300 К L несколько меньше, чем L_0 . Проведенные расчеты \varkappa_{ph} по (1) и (2) с учетом в законе Видемана–Франца для \varkappa_e значений L из рис. 4 представлены на рис. 5 (кривая I). Там же для сравнения приведем данные для $\varkappa_{ph}(T)$, полученные при расчете \varkappa_e с $L = L_0$ из рис. 3. Качественно обе зависимости $\varkappa_{ph}(T)$ (кривые 1 и 2 на рис. 5) не отличаются друг от друга. В обоих случаях наблюдается дополнительный вклад в \varkappa при $T \gtrsim 100$ К.

Надо отметить, что полученная зависимость $\varkappa_{ph}(T)$ с учетом данных для L из рис. 4 (кривая I на рис. 5) отвечает реальной картине проведения решеточной теплопроводности.

Вызывает сомнение слабая температурная зависимость для линейного участка $\varkappa_{ph} \sim T^{-0.2}$ для интервала 30–100 К и весьма приближенная и, возможно, не вполне правомерная оценка отношения L/L_0 по формулам (3)–(6) для сложного металла, каким является LuAgCu₄. Более реальны, с нашей точки зрения, данные, соот-

ветствующие расчету $\varkappa_{ph}(T)$ при условии, что $L = L_0$.

Таким образом, на основании сказанного выше можно предположить, что LuAgCu₄ является полуметаллом. Как известно, "родственные" ему соединения LuInCu₄, YbInCu₄ (при $T > T_v$) и YInCu₄ также являются полуметаллами [2,37–39].

В результате проведенного исследования можно сделать следующие выводы.

1) Никакой аномалии, связанной с постоянной кристаллической решетки LuAgCu₄, обнаруженной в [4], повидимому, не существует.

2) На основании анализа данных по теплопроводности LuAgCu₄ можно предположить, что это соединение является полуметаллом, как и родственные ему соединения LuInCu₄, YbInCu₄ (при $T > T_v$) и YInCu₄.

Авторы выражают благодарность Н.Ф. Картенко и Н.В. Шаренковой за проведение рентгеноструктурных исследований.

Список литературы

- И.А. Смирнов, Л.С. Парфеньева, А. Ежовский, Х. Мисёрек, С. Кремпел–Хессе, Ф. Риттер, В. Ассмус. ФТТ **41**, *9*, 1548 (1999).
- [2] А.В. Голубков, Л.С. Парфеньева, И.А. Смирнов, X. Мисёрек, Я. Муха, А. Ежовский. ФТТ 42, 8, 1357 (2000).
- [3] A.V. Gotsev, G. Bruls. Phys. Rev. B, submitted.
- [4] J.L. Sarrao, C.D. Immer, Z. Fisk, C.H. Booth, E. Figueroa, J.M. Lawrence, R. Modler, A.L. Cornelius, M.F. Handley, G.H. Kwei, J.D. Thompson, F. Bridges. Phys. Rev. B59, 10, 6855 (1999).
- [5] E. Bauer. Advances in Phys. 40, 4, 417 (1991).
- [6] N. Tsujii, J. He, K. Yoshimura, K. Kosuge, H. Michor, K. Kreiner, G. Hilscher. Phys. Rev. B55, 2, 1032 (1997).
- [7] M.J. Besnus, P. Haen, N. Hamdaoui, A. Herr, A. Meyer. Physica B163, 571 (1990).
- [8] N. Pilmayr, E. Bauer, K. Yosimura. J. Magn. Magn. Mater. 104–107, 639 (1992).
- [9] P. Schlottman. J. Appl. Phys. 73, 10, 5412 (1993).
- [10] T. Graf, J.M. Lawrence, M.F. Hundley, J.D. Thompson, A. Lacerda, E. Haanappel, M.S. Torikachvili, Z. Fisk, P.C. Canfield. Phys. Rev. B51, 21, 15053 (1995).
- [11] A. Severing, A.P. Murani, J.D. Thompson, Z. Fisk, C.K. Loong. Phys. Rev. B41, 4, 1739 (1990).

- [12] E. Bauer, R. Hauser, E. Gratz, K. Payer, G. Oomi, T. Kagayama. Phys. Rev. B48, 21, 15873 (1993).
- [13] A.L. Cornelius, J.M. Lawrence, J.L. Sarrao, Z. Fisk, M.F. Hundley, G.H. Kwei, J.D. Thompson, C.H. Booth, F. Bridges. Phys. Rev. B56, 13, 7993 (1997).
- [14] J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. De Witt, A.C. Lawson. Phys. Rev. B49, 3, 1627 (1994).
- [15] J.S. Kang, J.W. Allen, C. Rossel, C.L. Seaman, M.B. Maple. Phys. Rev. B41, 7, 4078 (1990).
- [16] H. Nakamura, K. Nakajima, Y. Kitaoka, K. Asayama, K. Yoshimura, T. Nitta. Physica B171, 238 (1990).
- [17] A. Continenza, P. Monachesi. J. Appl. Phys. **79**, *8*, 6423 (1996).
- [18] P. Monachesi, A. Continenza. Phys. Rev. B54, 19, 13558 (1996).
- [19] А.В. Голубков, Т.Б. Жукова, В.М. Сергеева. Изв. АН СССР. Неорган. материалы 2, 11, 77 (1966).
- [20] А.В. Голубков, В.М. Сергеева. Препринт Института физики металлов УНЦ АН СССР, Свердловск (1977) 28 с.
- [21] R. Casanova, D. Jaccard, C. Marcenat, N. Hamdaoui, M.J. Besnus. J. Magn. Magn. Mat. **90/91**, 587 (1990).
- [22] D.T. Adroja, S.K. Malik, B.D. Padalia, R. Vijayaraghavan. J. Phys. C: Sol. Stat. Phys. 20, L307 (1987).
- [23] C. Rossel, K.N. Yang, M.B. Maple, Z. Fisk, E. Zirngiebl, J.D. Thompson. Phys. Rev. B35, 4, 1914 (1987).
- [24] J.L. Sarrao, C.L. Benton, Z. Fisk, J.M. Lawrence, D. Mandrus, J.D. Thompson. Physica B223/224, 366 (1996).
- [25] J.L. Sarrao, C.D. Immer, C.L. Benton, Z. Fisk, J.M. Lawrence, D. Mandrus, J.D. Thompson. Phys. Rev. B54, 17, 1207 (1996).
- [26] A. Jezowski, J. Mucha, G. Pompe. J. Phys. D: Appl. Phys. 20, 1500 (1987).
- [27] И.А. Смирнов, В.И. Тамарченко. Электронная теплопроводность в металлах и полупроводниках. Наука, Л. (1977). 151 с.
- [28] Р. Берман. Теплопроводность твердых тел. Мир, М. (1979). 286 с. [R. Berman. Thermal Conduction in Solids. Clarendon Press, Oxford (1976)].
- [29] J.M. Lawrence, G.H. Kwei, J.L. Sarrao, Z. Fisk, D. Mandrus, J.D. Thompson. Phys. Rev. B54, 9, 6011 (1996).
- [30] A. Loffert, M.L. Aigner, F. Ritter, W. Assmus. Cryst. Res. Technol. 34, 267 (1999).
- [31] Н.В. Коломоец. ФТТ **8**, *4*, 997 (1966).
- [32] В.С. Оскотский, И.А. Смирнов. Дефекты в кристаллах и теплопроводность. Наука, Л. (1972). 159 с.
- [33] A.H. Wilson. The Theory of Metals. Cambridge Univ. Press (1954). 290 p.
- [34] J.L. Olsen, H.M. Rosenberg. Adv. Phys. 2, 28 (1953).
- [35] L. Colquitt. J. Appl. Phys. 36, 2454 (1965).
- [36] E.H. Sondheimer. Proc. Roy. Soc. A203, 75 (1950).
- [37] H. Nakamura, K. Ito, M. Shiga. J. Phys.: Condens. Matter 6, 9201 (1994).
- [38] K. Takegahara, T. Kasuya. J. Phys. Soc. Japan 59, 9, 3299 (1990).
- [39] H. Nakamura, K. Ito, A. Uenishi, H. Wada, M. Shiga. J. Phys. Soc. Japan 62, 5, 1446 (1993).