Влияние агрегации скварилиевого красителя на фотогенерацию зарядов в аморфных молекулярных полупроводниках на основе поли-*N*-эпоксипропилкарбазола

© Н.А. Давиденко, А.А. Ищенко*

Киевский университет им. Т. Шевченко, 252033 Киев, Украина * Институт органической химии Академии наук Украины, 253094 Киев, Украина E-mail: daviden@ukrpack.net

(Поступила в Редакцию 30 ноября 1999 г.)

Исследованы особенности фотопроводимости, фотоабсорбции и фотолюминесценции пленок поли-*N*эпоксипропилкарбазола, допированных внутриионным красителем. Для объяснения аномальных температурных зависимостей фотопроводимости пленок в области поглощения красителя исследовано влияние концентрации красителя, температуры и внешнего электрического поля на освобождение захваченных зарядов из ловушек, появившихся в пленках после их допирования красителем. Сделан вывод, что увеличение концентрации красителя приводит к усилению его агрегации, увеличению фотогенерации триплетных электронно-дырочных пар, сужению пространственного распределения ловушек для дырок вблизи красителя. Захваченные заряды дырок в таких ловушках связаны кулоновским взаимодействием с отрицательно заряженными фрагментами молекул красителя. Ловушки термоактивированно разрушаются.

Пленки поли-*N*-эпоксипропилкарбазола (ПЭПК), допированного катионными полиметиновыми красителями, обладают фотополупроводниковыми свойствами и могут использоваться для записи и обработки оптической информации. Такие пленки имеют достаточно высокую фотопроводимость и проявляют электролюминесцирующие свойства [1]. Однако для использования в электрофотографических и голографических средах более предпочтительны внутриионные красители [2], способные к фотогенерации как положительных зарядов (дырок), так и отрицательных (электронов). Среди внутриионных соединений весьма перспективными в этом направлении оказались органические красители производные квадратной кислоты, называемые скварилиевыми. Они характеризуются высокой термо- и фотостойкостью и имеют интенсивные полосы поглощения [3]. В настоящее время сквараины широко используются в полимерных материалах лазерных дисков для записи и хранения информации [3]. Одним из факторов, понижающих фотопроводимость и интенсивность люминесценции, является захват неравновесных зарядов на ловушки, существование которых при комнатных температурах в ПЭПК с ионными красителями было установлено в [4]. Вопрос о влиянии ловушек на фотопроводимость и люминесценцию пленок ПЭПК с внутриионными красителями оставался открытым. Кроме того, скварилиевые красители имеют повышенную склонность к агрегации [5], что также проявляется на электрофизических свойствах пленок ПЭПК [2]. Поэтому цель настоящей работы — выяснение особенностей оптических и фотоэлектрических свойств пленок ПЭПК при изменении концентрации скварилиевого красителя.

1. Образцы и методика эксперимента

Использовали скварилиевый краситель на основе производного 1,3,3-триметил-3*H*-индолина (HISD)

Молекула этого красителя имеет отрицательно заряженный (A^-) и положительно заряженный (D^+) центры. Оптические спектры поглощения и фотолюминесценции пленок ПЭПК для различной концентрации (N) красителя представлены на рис. 1.

Для достижения поставленной в работе цели определяли: влияние концентрации красителя в ПЭПК на спектры фотоабсорбции и фотолюминесценции пленок; величину изменения интенсивности фотолюминесценции пленок в зависимости от напряженности внешнего электрического поля; величину фототока в образцах сандвич-структуры при их облучении светом из области поглощения красителя при различных температурах; соотношение концентраций синглетных (n_1) и триплетных (n_3) электронно-дырочных пар (ЭДП) при облучении пленок светом из области поглощения красителя; влияние захваченных носителей заряда на фотопроводимость исследуемых пленок.

Образцы приготовляли либо в виде структур со свободной поверхностью: кварцевая подложкаполимерная пленка, либо в виде сандвич-структур: Al-полимерная пленка–SnO₂. Использовали пленки ПЭПК + N mas.% HISD. Концентрацию N красителя изменяли в пределах от $1 \cdot 10^{-2}$ до 5 mas.%. Полимерные пленки получали в результате высушивания политых растворов ПЭПК + N mas.% HISD в дихлорэтане на кварцевые подложки либо со слоем SnO₂, либо без слоя SnO₂. Толщины высушенных пленок $L = 0.5-2 \,\mu$ m. Пленки Al наносили методом термического напыления в вакуумной камере и толщина Al была 300–350 Å.

В образцах сандвич-структуры измеряли плотность фототока (*j*_{PH}) в режиме фотосопротивления и интенсивность фотолюминесценции (Ірг.) в области длин волн света $\lambda = 350 - 1200$ nm во время облучения образца со стороны электрода SnO₂ светом с длиной волны с $\lambda_1 = 546$, 633, 680 или 711 nm (интенсивность I_1), или $\lambda_2 = 380$ nm (интенсивность I₂). Облучение производили светом от лампы накаливания с использованием светофильтров, Не-Ne лазера, водородной лампы. Интенсивность света была в пределах $I_1 = 0.2-20$, $I_2 = 0.1-0.5$ W/m². Напряженность электрического поля изменяли в пределах $E = 2 \cdot 10^7 - 3 \cdot 10^8 \, \text{V/m}$. Измерения выполнены для температуры T из диапазона 290–355 K, при которой используются пленки ПЭПК в качестве регистрирующих сред. По результатам измерений *ј*РН рассчитывали относительную величину квантового выхода фотогенерации носителей заряда $\eta = j_{\rm PH} h \nu / q I_1 \kappa L$, где q заряд электрона, $h\nu$ — энергия кванта света. Одновременно с *j*_{PH} измеряли *I*_{PL} и определяли величину $\delta I_{\rm PL}$ относительного изменения $I_{\rm PL}$ в E из соотношения $\delta I_{\rm PL} = \{I_{\rm PL}(E) - I_{\rm PL}(0)\}/I_{\rm PL}(0),$ где $I_{\rm PL}(E)$ — квазистационарное значение I_{PL} после включения электрического поля, $I_{\rm PL}(0)$ — квазистационарное значение $I_{\rm PL}$ до включения электрического поля.

Для определения соотношения n₁ и n₃ использовали предложенную в [6,7] методику определения изменения фотопроводимости аморфных молекулярных полупроводников(АМП) в области поглощения допантов при одновременной фотогенерации триплетных экситонов. Триплетные экситоны являются катализаторами S-T-конверсии ЭДП [8,9]. Поэтому фотогенерация триплетных экситонов увеличивает фотопроводимость АМП, обусловленную диссоциацией синглетных ЭДП, и уменьшает фотопроводимость АМП, обусловленную диссоциацией триплетных ЭДП. В настоящей работе так же как в [6,7] для фотогенерации ЭДП образцы сандвичструктуры облучали светом с λ_1 , а для фотогенерации экситонов — светом с λ_2 (длина волны света λ_2 не попадает в область поглощения HISD и находится вблизи красной границы поглощения ПЭПК, где происходит эффективная фотогенерация триплетных экситонов [10]). При облучении образца светом с λ_1 или λ_2 регистрировали квазистационарный фототок соответственно *j*₁ или j_2 . При облучении образца одновременно светом с λ_1 и λ_2 регистрировали квазистационарный фототок j_3 . Для анализа результатов рассчитывали величину отношения фототоков $\delta j = j_3/(j_1 + j_2)$ и определяли зависимости $j_1, \delta j$ от N, E, λ_1 . Соотношение между n_1 и n_3 в фотогенерированных ЭДП так же как в [6,7] оценивали по тому, на сколько δj отличается от единицы: если $\delta j > 1$ или $\delta j < 1$, то при фотогенерации больше образуется соответственно синглетных или триплетных ЭДП.

В образцах со свободной поверхностью полимерных пленок с помощью спектрально-вычислительного комплекса КСВИП-23 измеряли оптические спектры коэффициента поглощения (к) и интенсивности фотолюминесценции (Ірг.) в области длин волн света $\lambda = 350 - 1200$ nm. Измеряли также оптическую плотность пленок К1 и К2 соответственно на длинах волн света λ_1 и λ_2 с помощью фотодиодов, усиленные сигналы которых регистрировали запоминающим осциллографом. Рассчитывали величину ΔK_1 , ΔK_2 — отклонение оптической плотности пленок от стационарного значения во время облучения и после облучения пленок светом. Кроме того, измеряли изменение IPL, K1, K2 в результате импульсного нагрева полимерных пленок до температуры $+(85-90)^{\circ}$ С со скоростью 10^{6} K/s. Импульсный нагрев пленок осуществляли за счет джоулевого тепла, выделяемого в проводящем слое SnO₂, нанесенного на кварцевые подложки под полимерными пленками, при прохождении через него импульса тока длительностью 0.1 s.

Для создания неравновесной концентрации (M) захваченных на ловушки зарядов образцы в течение времени t_1 облучали светом с длиной волны λ_2 . При этом происходит фотогенерация и захват подвижных дырок на ловушки, создаваемые карбазольными ядрами (Cz) ПЭПК. Захваченной дырке соответствует катион-радикал (Cz^{•+}), оптический спектр поглощения которого находится в видимой области света (кривая 5 на рис. 1). Накопление M регистрировали по уменьшению K_2 и по увеличению K_1 , а релаксацию M — по восстановлению K_1 и K_2 за время t_2 после прекращения облучения светом с λ_2 .

2. Экспериментальные результаты

На рис. 1 представлены спектры поглощения и фотолюминесценции пленок ПЭПК с HISD. Рост концентрации красителя в пленке сопровождается батохромным сдвигом максимума и сужением полос. Эти

Рис. 1. Нормированные спектры поглощения (1, 2) и люминесценции (3, 4) пленок ПЭПК + 0.01 max% HISD (1, 3) и ПЭПК + 1 mas.% HISD (2, 4), а также спектр поглощения пленок полистирол + 10 mas.% ПЭПК (5), полученный в работе [18] при γ -радиолизе.

результаты наряду с результатами наших предыдущих спектроскопических исследований в области температур T = 4.2-320 K [5] указывают на то, что с увеличением N увеличивается агрегация молекул HISD. Нами также было установлено ранее, что строение агрегатов близко к структуре "голова–хвост".

В образцах Al- Π ЭПК + N mas.% HISD-SnO₂ фототок увеличивается с ростом *E* и *N*. При $L = 1 \, \mu m$, $E = 1 \cdot 10^8 \,\text{V/m}$ и N = 5 величина η достигает 0.02. Графики зависимости $\eta(E)$ линейны в координатах $\ln \eta$ от $E^{1/2}$. Тангенсы угла наклона графиков этих зависимостей для всех исследуемых образцов одинаковы. Это позволяет прелположить. что в исслелуемых пленках механизм фотогенерации свободных носителей заряда подобен тому, какой предложен для АМП на основе ПЭПК [11]. Согласно этому механизму после поглощения света с λ_1 из возбужденного центра фотогенерации образуется ЭДП. Во внешнем электрическом поле ЭДП диссоциирует, причем при диссоциации дырка посредством прыжков по карбазольным ядрам ПЭПК удаляется от центра фотогенерации, в котором остался квазинеподвижный электрон. Вероятность диссоциации зависит от возможности активационного преодоления дыркой кулоновского барьера (W_{0ph}), который равен энергии кулоновского притяжения между дыркой и электроном. При этом зависимости ј и η от E и T можно было бы представить в аналитическом виде

$$j \sim \eta \sim \exp\left(-\left(W_{0ph} - \beta E^{1/2}\right)\right) / \left(T^{-1} - T_0^{-1}\right), \quad (1)$$

где k — постоянная Больцмана, T_0 — характеристическая температура, которая для АМП на основе ПЭПК составляет 490 \mp 20 К. Рассчитанное значение коэффициента β из графиков зависимости $\eta(E)$ в координатах $\lg \eta$ от $E^{1/2}$ составляет (4.3 \mp 0.3) \cdot 10⁻⁵ eV \cdot (V/m)^{-1/2}, что близко к теоретическому значению постоянной Пула– Френкеля [11].

Однако в механизме фотопроводимости для пленок ПЭПК с HISD имеются существенные отличия от других допированных пленок ПЭПК. На рис. 2 представлены результаты измерений зависимости *j*₁ от *T* для разных N, E. Особенностью этих зависимостей является нелинейность экспериментальных кривых в координатах $\ln j_1$ от 1/T. При малых N и E эти кривые имеют пологий минимум, который исчезает с увеличением N и Е. Эти результаты подобны тем, которые были получены в пленках ПЭПК с катионными красителями [5], и могут быть объяснены захватом фотогенерированных дырок на ловушки, образующиеся в полимере вблизи электрически заряженных фрагментов молекул красителя. Однако пологого минимума зависимостей *j*₁ от *T* для пленок ПЭПК с катионными красителями не наблюдалось. Последнее указывает на то, что обсуждаемые зависимости хотя и могут быть связаны с термическим разрушением ловушек для фотогенерированных зарядов при увеличении температуры, но природа этих ловушек более сложная, чем в пленках ПЭПК с катионными красителями.

Рис. 2. Зависимость $\ln j_1$ от 1/T в образцах Al-ПЭПК + 0.01 mas.% HISD–SnO₂ (*1–3*) и Al–ПЭПК + 1 mas.% HISD–SnO₂ (*4–6*) для $E = 3 \cdot 10^7$ V/m (*1–4*), 5.2 × 10^7 V/m (*2*, 5), $7 \cdot 10^7$ V/m (*3*, 6).

Рис. 3. Зависимость $\delta I_{\rm PL}$ от *E* в образцах Al-ПЭПК + *N* mas.% HISD–SnO₂ для $L = 1 \,\mu$ m и $N = 0.1 \, (1)$, 0.5 (2), 5 (3), измеренные при их облучении светом с $\lambda = 633$ nm.

На рис. 3 представлены графики зависимости δI_{PL} от *N* для разных *E*. Результаты измерений этих зависимостей свидетельствуют об увеличении тушащего действия электрического поля на фотолюминесценцию с ростом агрегации HISD. Согласно выводам работы [12], такое увеличение δI_{PL} может быть связано с увеличением вероятности диссоциации ЭДП (при этом увеличивается η) из-за увеличения подвижности второго носителя заряда в ЭДП (электрона) и/или из-за увеличения вероятности фотогенерации долгоживущих ЭДП (триплетных). Для

Рис. 4. Зависимость δj от E в образцах Al-ПЭПК + N mas.% HISD-SnO₂ для $L = 1 \mu$ m и N = 0.01 (I), 0.1 (2), 5 (3), измеренные при их облучении светом с $\lambda = 633$ nm.

Рис. 5. Зависимости ΔK_1 (крестики), ΔK_2 (кружки), M (точки) от $\ln t_2$ при $t_1 = 1$ s, T = 293 K, $\lambda_2 = 380$, $\lambda_1 = 633$ nm в образцах с пленками ПЭПК + 0.01 mas.% HISD (1) и ПЭПК + 0.1 mas.% HISD (2, 4–7) ПЭПК + 1 mas.% HISD (3) при температуре T = 293 (1–3), T = 307 (4), 324 (5), 331 (6), 340 (7).

проверки второго предположения авторами были проведены дополнительные исследования.

На рис. 4 представлены графики зависимости δj от E для разных N. Поскольку величина $\delta j > 1$, то, согласно [6,7], можно считать, что при облучении исследуемых образцов светом с λ_1 в пленках ПЭПК + N mas.% HISD происходит фотогенерация в основном синглетных ЭДП. Но так как с ростом N величина δj уменьшается, то можно также считать, что с увеличением степени агрегации красителя уменьшается разница между фотогенерированными синглетными и триплетными ЭДП, а именно увеличивается отношение n_3/n_1 . Последнее означает, что с ростом концентрации красителя в ПЭПК увеличение вероятности диссоциации ЭДП связано и с увеличением их времени жизни из-за триплетного спинового состояния ЭДП.

В образцах Al- Π ЭПК + N mas.% HISD-SnO₂ после начала облучения светом фототок вначале увеличивается до квазистационарного значения, а при выключении света — уменьшается до нуля. Но если образец после облучения светом с λ_2 в течение времени t_1 через интервал времени t_2 облучить светом с λ_1 , то на переднем фронте импульса тока наблюдается максимум, уменьшающийся затем до квазистационарного значения. По величине этого максимума можно оценить концентрацию М зарядов, образовавшихся после облучения светом с λ_2 и участвующих в фотопроводимости, стимулированной светом с λ_1 . Важно отметить, что наибольшее влияние облучения светом с λ_1 наблюдается при $\lambda_1 = 633$ nm и уменьшается до нуля при переходе к $\lambda_1 = 711 \, \mathrm{nm}$. Из графиков зависимости $M(t_1)$ установлено, что ее можно аппроксимировать простой экспоненциальной функцией с одной постоянной времени $(3.1 \pm 0.2 \text{ s} \text{ для } I_1 = 20 \text{ W/m}^2).$

Величина M уменьшается с ростом t_2 , не зависит от *Е* в промежутке времени $t_1 + t_2$, но уменьшается до нуля, если в интервале времени t_2 даже при E = 0образец был облучен светом с λ_1 . Зависимости $M(t_2)$ не могут быть представлены простой экспоненциально спадающей функцией, но графики этих зависимостей можно аппроксимировать прямыми линиями в координатах М от ln t2. На рис. 5 видно, что с ростом концентрации HISD тангенс угла наклона этих графиков увеличивается. При увеличении N от 0.01 до 1 тангенс угла наклона графиков $M(\ln t_2)$ увеличивается в 1.6 раза. Тангенсы угла наклона графиков не зависят от Е. При измерениях обсуждаемых зависимостей для разных температур образцов в диапазоне T = 293 - 350 К установлено (кривые 1, 5, 6 на рис. 5), что с ростом T величина M уменьшается и это уменьшение имеет активационный характер с энергией активации 0.17 ± 0.03 eV. На рис. 5 также представлены графики зависимостей ΔK_1 и ΔK_2 от $\ln t_2$. Видно, что последние коррелируют друг с другом и с графиками зависимости $M(t_2)$.

Во время облучения образцов величина $I_{\rm PL}$ уменьшается, но если во время или после облучения полимерную пленку быстро нагреть, то интенсивность фотолюминесценции восстанавливается. Одновременно с восстановлением $I_{\rm PL}$ при импульсном нагреве происходит восстановление K_1 и K_2 .

3. Обсуждение результатов

Обратимся к рис. 2. Авторами уже было высказано предположение, что неэкспоненциальный характер зависимостей j_1 от T может быть связан с тем, что после фотогенерации из HISD дырки захватываются на ловушки в ПЭПК. С ростом T концентрация таких ловушек уменьшается, и они оказывают меньшее влияние на процесс диссоциации ЭДП. Однако примечательным является уменьшение j_1 с ростом T для малых N и E. В АМП на основе ПЭПК подвижными являются дырки, и зависимость подвижности (μ_p) от E и T может быть представлена [11,13] в аналитическом виде, подобном (1)

$$\mu_p \sim \mu_0 \exp\left(-\left(W_{0p} - \beta E^{1/2}\right)\right) / \left(T^{-1} - T_0^{-1}\right), \qquad (2)$$

где μ_0 — величина подвижности дырок в нулевом электрическом поле, W_{0p} — энергия активации подвижности дырок, которая для ПЭПК составляет 0.62 eV [11]. Поэтому можно предположить, что в малых электрических полях дрейфовая подвижность дырок мала, и она не достаточна для того, чтобы дырки, термически освободившиеся из ловушек вблизи центров рекомбинации, могли уйти от центра и не рекомбинировать. Энергия активации освобождения дырок из ловушек вблизи красителя меньше величины $W_{0p} - \beta E^{1/2}$ и с ростом Т дырки из ловушек с большей вероятностью участвуют в рекомбинации, чем в диссоциации ЭДП. С ростом Е величина μ_p увеличивается и термически освобождаемые дырки с большей вероятностью уходят от центра рекомбинации. Такой механизм позволяет объяснить наблюдаемый пологий минимум на графиках зависимостей j_1 от T (рис. 2). Мы также предполагаем, что с ростом концентрации HISD появляются дополнительные условия для увеличения вероятности диссоциации ЭДП. Этим условием является увеличение времени жизни ЭДП из-за триплетного спинового состояния. Действительно, согласно выводам работы [12] увеличение тушащего действия электрического поля на фотолюминесценцию (рис. 3) может быть связано с увеличением доли триплетных состояний в агрегатах HISD и с увеличением отношения n_3/n_1 . Об этом же свидетельствуют результаты измерений зависимостей δj от *E* для разных *N* (рис. 4). Таким образом, при увеличении степени агрегации красителя сближаются энергии возбужденных S и T состояний красителя [14] и увеличивается вероятность фотогенерации из этих состояний триплетных ЭДП.

Для анализа сделанного предположения рассмотрим более детально особенности образования и релаксации ловушек вблизи HISD в ПЭПК. Полученные результаты свидетельствуют о том, что в исследуемых АМП при облучении светом с λ_2 происходит накопление неравновесных частиц, поглощающих свет видимого и ближнего ИК-диапазонов. После прекращения облучения эти частицы достаточно медленно исчезают. Синхронно с изменением концентрации таких частиц изменяется интенсивность фотолюминесценции красителей. После облучения светом с λ_2 и при последующем импульсном нагреве образцов величина I_{PL} восстанавливается. Кроме того, возбуждение молекул HISD светом с λ_1 приводит к ускорению релаксации концентрации этих частиц.

Результаты измерений зависимостей $M(t_2)$ (рис. 5) указывают на то, что после облучения светом с λ_2 в пленках образуются некоторые связанные состояния, состоящие из положительно и отрицательно заряженных частиц, образовавшиеся после фотогенерации молекулярных экситонов [13]. Уменьшение концентрации таких состояний может быть рассмотрено в рамках модели

рекомбинации пар зарядов с конечным пространственным распределением по расстояниям между этими зарядами [15,16]. Для парного распределения зарядов, участвующих в рекомбинации, изменение их концентрации определяется выражением

$$M(t_2)/M_0 = \int_{r_1}^{\infty} f(r) \exp\left(-\omega(r)t\right) dr,$$
 (3)

где $\omega(r)$ — скорость вероятности перехода дырки в центр рекомбинации, r_1 — наименьшее расстояние между зарядами в распределении пар, f(r) — функция распределения пар зарядов по расстояниям. Для прямоугольного распределения пар зарядов (дырки на карбазольном ядре ПЭПК и электрона, оставшегося после диссоциации экситона) с расстояниями r_1 и r_2 между дыркой и электроном выражение (3) может быть представлено в виде

$$M(t_2)/M_0 = \left(r_2 - \alpha_p \ln(\nu_1 t_2)/2\right) / (r_2 - r_1), \quad (4)$$

где α_p — радиус локализации дырки, ν_1 — частотный фактор перехода дырки при рекомбинации. Согласно этой модели, увеличение тангенса угла наклона графиков зависимостей на рис. 5 с ростом N связано с уменьшением ширины этого пространственного распределения. Последнее обусловлено усилением связи зарядов в парах и уменьшением вероятности диффузионного разделения зарядов в парах за время их жизни. На то, что заряды в этих парах не разделяются посредством диффузии, указывают и результаты измерений зависимостей $M(t_2)$ для разных T (рис. 5), так как с ростом температуры не изменяется тангенс угла наклона графиков $M(t_2)/M_0$ от $\ln t_2$. Поскольку в ПЭПК подвижными являются дырки и они могут диффундировать по Cz, то можно считать, что с ростом N в этих парах зарядов не происходит ухудшение транспорта носителей из-за увеличения агрегации красителя, а уменьшается пространственное распределение ловушек для дырок вблизи агрегатов красителя.

Наблюдаемые эффекты захвата и освобождения дырок, по-видимому, не могут быть объяснены образованием лабильных комплексов или триплетных эксиплексов, подобных тем, которые образуются в ПЭПК с катионным красителем Родамин 6Ж [17], так как релаксация возникающих состояний в нашем случае не описывается простой экспоненциальной функцией Нельзя описать наблюдаемые эффекты и (рис. 5). фотоосвобождением захваченных зарядов. После облучения светом с λ_2 образуются захваченные дырки, поглощающие свет с λ_1 , и именно они должны были бы участвовать в наведенной фотопроводимости. Максимум в электронных спектрах поглощения Cz^{•+} находится вблизи $\lambda = 800 \,\mathrm{nm}$ [18], но для этих длин волн света в образцах Al- Π ЭПК + N mas.% HISD-SnO₂ не наблюдается максимума фототока, вызванного предварительным облучением светом с λ_1 .

Рис. 6. Схема процессов образования и релаксации связанных состояний в пленке ПЭПК + HISD.

Наиболее адекватной моделью образования, релаксации и влияния ловушек на фотопроводимость может быть модель, основанная на предположении о захвате дырок $Cz^{\bullet+}$ вблизи заряженных фрагментов молекул красителя. Для пояснения этой модели воспользуемся рис. 6, где изображена схема процессов образования и релаксации связанных состояний после диссоциации молекулярных экситонов в ПЭПК с HISD. Эту схему можно представить следующими реакциями.

1) После поглощения в ПЭПК кванта света с энергией $h\nu_2$ и диссоциации молекулярного экситона возможен захват дырки вблизи отрицательно заряженного фрагмента красителя, в результате чего образуется связанное состояние ($Cz^{\bullet+}A^{-}$).

2) Релаксация состояния $(Cz^{\bullet+}A^{-})$ носит активационный характер и сопровождается рекомбинацией $Cz^{\bullet+}$ с электроном, оставшимся после диссоциации экситона. Энергия активации этого процесса составляет 0.17 ± 0.03 eV.

3) Увеличение концентрации $Cz^{\bullet +}$ обусловливает увеличение оптической плотности пленок в области поглощения этих катион-радикалов и тушение люминесценции красителя.

4) Поглощение молекулой красителя кванта света с энергией $h\nu_1$ приводит к перераспределению электронной плотности в ней (на рис. 6 это изображено переносом электрона e^- от A^- на D^+), что в свою очередь является причиной разрыва связи между зарядами в состоянии (Cz^{•+}A⁻).

5) После освобождения заряда из $Cz^{\bullet +}$ возможна либо его рекомбинация, либо рождение свободной дырки p^+ , участвующей в наведенной фотопроводимости.

Эти же ловушки захватывают положительные заряды дырок и при фотогенерации ЭДП в результате облучения пленок светом из области поглощения красителя. С ростом агрегации красителя уменьшается пространственное распределение ловушек вблизи отрицательно заряженных фрагментов красителя и в электрическом поле уменьшается вероятность захвата дырок на эти ловушки. Последнее является дополнительной причиной исчезновения пологого минимума на графиках зависимости $\ln j_1$ от 1/T при возрастании N (рис. 2). Поэтому можно считать, что в пленках ПЭПК с HISD вблизи отрицательных фрагментов молекул красителя происходит изменение конформации карбазольных фрагментов ПЭПК и образуются ловушки для дырок. С ростом концентрации HISD сужается пространственное распределение ловушек конформационного типа. С ростом температуры увеличивается молекулярное движение фрагментов ПЭПК и эти ловушки разрушаются. При облучении пленок ПЭПК с HISD светом из области поглощения красителя происходит фотогенерация в основном синглетных электронно-дырочных пар, в которых дырки локализованы на карбазольных фрагментах ПЭПК и могут быть захвачены на ловушки конформационного типа вблизи отрицательно заряженных фрагментов молекул красителя. При термическом разрушении этих ловушек уменьшается время жизни фотогенерированных дырок и увеличивается вероятность их рекомбинации в слабых электрических полях. С ростом концентрации HISD увеличивается степень агрегации красителя. При этом сближаются S и T состояния агрегированных молекул красителя. Последнее приводит к увеличению вероятности фотогенерации триплетных электронно-дырочных пар из возбужденных состояний красителя. Время жизни триплетных пар больше времени жизни синглетных и поэтому увеличивается вероятность их диссоциации даже в слабых электрических полях.

Список литературы

- [1] Н.А. Давиденко, А.А. Ищенко. ФТТ 40, 4, 629 (1998).
- [2] Н.А. Давиденко, А.А. Ищенко, В.А. Павлов. Журн. науч. и прикл. фотографии 44, 2, 45 (1999).
- [3] Chemistry of Functional Dyes. / Ed. by Z. Zochioda, J. Shirota. Mita Press, Tokyo (1993). 320 p.
- [4] Н.А. Давиденко, А.А. Ищенко, А.К. Кадащук, Н.Г. Кувшинский, Н.И. Остапенко, Ю.А. Скрышевский. ФТТ 41, 2, 203 (1999).
- [5] Ю.А. Скрышевский, А.А. Ищенко, А.К. Кадащук, Н.А. Давиденко, Н.И. Остапенко. Оптика и спектроскопия 88, 3, 000 (2000).
- [6] Н.А. Давиденко, Н.Г. Кувшинский. ФТТ **39**, *6*, 1020 (1997).
- [7] N.A. Davidenko, N.G. Kuvshinsky. Advanced materials for optics and electronics 7, 255 (1997).
- [8] В.Л. Бердинский, А.Л. Бучаченко. Кинетика и катализ 37, 5, 659 (1996).
- [9] A.L. Buchachenko, V.L. Berdinsky. J. Phys. Chem. 100, 18 292 (1996).
- [10] А. Ундзенас, Ю. Гражулявичус, Я. Урбанавичене. Лит. физ. сб. 21, 6, 106 (1981).
- [11] Н.Г. Кувшинский, Н.А. Давиденко, В.М. Комко. Физика аморфных молекулярных полупроводников. Лыбидь, Киев (1994). 176 с.

- [12] N.A. Davidenko, A.A. Ishchenko. Chem. Phys. 247, 237 (1999).
- [13] M. Pope, C.E. Swenberg. Electronic Processes in Organic Crystals. Clarendon Press, Oxford (1982). 725 p.
- [14] А.А. Ищенко. Строение и спектрально-люминесцентные свойства полиметиновых красителей. Наук. думка, Киев (1994). 232 с.
- [15] К.И. Замараев, Р.Ф. Хайрутдинов, В.П. Жданов. Туннелирование электрона в химии. Наука, Новосибирск (1985). 317 с.
- [16] В.П. Гольданский, Л.И. Трахтенберг, В.Н. Флёров. Туннельные явления в химической физике. Наука, М. (1986). 296 с.
- [17] N.A. Davidenko, N.G. Kuvshinsky, V.G. Syromyatnikov, L.N. Fedorova. Advanced Materials of Optics and Electronics 7, 207 (1997).
- [18] А.С. Холманский, Б.М. Румянцев, Е.Л. Кузьмина. Химия высоких энергий **21**, *4*, 379 (1987).