Рамановские и инфракрасные спектры новых органических металлов $(ET)_8[Hg_4X_{12}(C_6H_5Y)_2], X, Y = CI, Br$

© Р.М. Власова, И.И. Решина, Н.В. Дричко, Р.Н. Любовская*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург. Россия

* Институт проблем химической физики Российской академии наук.

142432 Черноголовка, Московская обл., Россия

E-mail: Rema.Vlasova@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 20 января 2000 г.)

Исследованы рамановские спектры и спектры инфракрасного отражения новых органических металлов на основе молекулы BEDT-TTF (или сокращенно ET) с формулой $(ET)_8[Hg_4X_{12}(C_6H_5Y)_2]$, X,Y = Cl,Br, отличающихся от ранее иследованных соединений, в частности, типом упаковки молекул ET в квазидвумерных проводящих слоях. В ИК спектре отражения наблюдались высокое отражение и плазменный минимум, которые свидетельствовали о наличии квазисвободных носителей заряда (дырок), как и в других проводящих солях ET. Однако в отличие от последних полосы A_g -колебаний, наблюдавшиеся в рамановском спектре, не активировались в ИК спектре, как это наблюдалось ранее для проводящих солей ET с другими типами упаковки. Произведено отнесение линий рамановского спектра к нормальным колебаниям молекулы ET и определены их ионизационные сдвиги. Показано, что частоты наиболее интенсивных линий $\nu_3(A_g)$ укладываются в линейную зависимость от заряда на катионе, характерную для различных солей ET. Не обнаружено корреляции частот линий $\nu_3(A_g)$ с типом упаковки. В рамановских спектрах при возбуждении линиями Ar^+ -лазера с энергией 2.54 и 2.41 eV наблюдался сильный фон с широким максимумом в области рамановского сдвига 3000 сm⁻¹. Высказано предположение, что он может быть связан с рассеянием на одночастичных и коллективных электронных возбуждениях.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 98-02-18303 и 97-03-33686а).

Открытие сверхпроводимости в ион-радикальных солях на основе молекулы bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF или сокращенно ET) [1] привело к интенсивному изучению их структурных и физических свойств с целью выяснения механизма сверхпроводимости и инициировало синтез новых материалов на основе этой молекулы. В настоящее время синтезировано большое количество таких материалов [2]. Часть из них является сверхпроводниками (с наивысшей для органических соединений температурой сверхпроводящего перехода $T_c = 11.6 \text{ K}$ для k-(ET)₂CuN(CN)₂Br [3]), часть — металлами с переходом в диэлектрическое состояние при различных температурах [2,4]. Мнения относительно механизма сверхпроводимости остаются до настоящего времени противоречивыми. Для большинства этих соединений характерно сильное взаимодействие между квазисвободными носителями заряда в слоях молекул ЕТ и внутримолекулярными полносимметричными колебаниями (A_g) этой молекулы. Благодаря такому взаимодействию происходит активация в спектре ИК отражения нормально запрещенных Ag-колебаний, хотя и с существенно измененными частотами по сравнению с их значениями в рамановском спектре [5,6].

Недавно были синтезированы соединения типа $(ET)_8[Hg_4X_{12}(C_6H_5Y)_2]$, где X,Y = Cl,Br [7], в спектре отражения которых в области частот внутримолекулярных колебаний 800–1300 сm⁻¹ вместо ярко выраженных интенсивных колебательных полос наблюдался лишь слабый размытый максимум [8]. В то же время высокое

отражение и плазменный минимум в ИК спектре отражения по крайней мере для одного из направлений поляризации свидетельствовали о наличии квазисвободных носителей заряда (дырок), как и в других проводящих солях ЕТ. Авторы [8] связывают отсутствие электронноколебательных полос в ИК спектре отражения с особенностями структуры этих соединений. В отличие от большинства проводящих солей на основе ЕТ, у которых молекулы в квазидвумерных (2D) проводящих слоях упакованы по типу плоскость к плоскости (face-to-face) во взаимно перпендикулярные димеры (к-фаза) или в параллельные стопки (*β*-фазы), в новом ряду соединений молекулы ЕТ в проводящих слоях образуют "ленты", в которых они связаны между собой укороченными S-S-контактами по типу сторона к стороне [9]. Авторы [8] полагают, что при "ленточной" конфигурации электронно-колебательные взаимодействия возможны только с неполносимметричными оптически активными колебательными модами, и на основе модельного расчета демонстрируют, что в этом случае интенсивные колебательные полосы в ИК спектре отсутствуют.

Представляло интерес исследовать спектры рамановского рассеяния этих соединений, которые ранее не измерялись, с тем чтобы изучить возможное влияние на них необычного способа упаковки молекул в кристаллах, а также влияние аниона на рамановские частоты. Известно, что частоты наиболее интенсивных рамановских линий ν_2 и ν_3 (для D_{2h} -симметрии молекулы ЕТ), соответствующих валентным A_g -колебаниям центральной

и кольцевых С=С-связей, приблизительно линейно зависят от заряда на катионе [10]. Средний заряд катиона определяется стехиометрическим отношением ЕТ к аниону. С увеличением положительного заряда на катионе уменьшается электронная населенность высшей занятой молекулярной орбитали (НОМО), что приводит к ослаблению С=С-связей и, следовательно, к уменьшению соответствующих частот колебаний. Однако в ряду различных соединений наблюдались заметные (до 20 cm⁻¹) отклонения от средней линейной зависимости. Эти отклонения могут быть обусловлены межмолекулярными взаимодействиями, которые зависят от упаковки молекул ЕТ в кристалле, а также влиянием аниона. Можно было предполагать, что в исследуемых солях с "ленточным" расположением молекул частота наиболее заметной в наших спектрах линии ν_3 будет отклоняться от средней линейной зависимости.

Представляло интерес также зарегистрировать рамановские спектры и спектры ИК отражения на образцах, полученных в одном и том же цикле изготовления.

1. Образцы и техника эксперимента

Исследовались рамановские спектры солей $(ET)_{8}[Hg_{4}Cl_{12}(C_{6}H_{5}Cl)_{2}]$ (No 8), $(ET)_{8}[Hg_{4}Br_{12}(C_{6}H_{5}Cl)_{2}]$ (№ 7), (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (№ 9), которые являются органическими металлами с переходом в диэлектрическое состояние при 1.5, 90 и 130 К соответ-Были исследованы также рамановские ственно [11]. соединений $(ET)_2[Hg(SCN)Cl_2]$ (No 2) спектры (ET)₄Hg_{2.89}Br₈ (№ 1), являющихся металлом и сверхпроводником ($T_c = 4.2 \,\text{K}$), соответственно, с упаковкой молекул ЕТ в обоих соединениях по типу к-фазы. Был также измерен рамановский спектр кристалла, состоящего из нейтральных молекул BEDT-TTF (ET⁰).

Поляризованные спектры отражения измерялись для кристалла $(ET)_8[Hg_4Br_{12}(C_6H_5Br)_2]$ (№ 9), причем в более широкой спектральной области, чем представленные ранее в работе [8]. Спектры отражения кристаллов $(ET)_4Hg_{2.89}Br_8$ (№ 1) и $(ET)_2[Hg(SCN)Cl_2]$ (№ 2) описаны нами ранее в работах [12] и [13] соответственно.

Рамановские спектры регистрировались на спектрометре с двойным монохроматором U-1000 (Жобен-Ивон) в геометрии обратного рассеяния или в 90°-геометрии. В последнем случае образец находился в фокусе короткофокусного объектива, собирающего рассеянный свет в большом телесном угле, благодаря чему достигалось пятикратное увеличение чувствительности по сравнению со схемой обратного рассеяния. Поскольку интенсивность рамановского рассеяния от всех солей ЕТ была очень мала, обычно применялась 90°-геометрия. Возбуждение осуществлялось линией 488 nm (2.54 eV) Ar⁺-лазера в резонансе с полосой поглощения в этой области. Мощность лазерного излучения на образце не превышала 6 mW, и при этом лазерное пятно было слегка расфокусировано, чтобы избежать повреждения образца. Возбуждающий луч был поляризован в плоскости падения (*H*-поляризация). В рассеянном свете обычно присутствовали обе поляризации (*H* и *V*). Измерения спектров производились при комнатной температуре с шагом 1 cm⁻¹, с временем измерения в каждой точке 10 s. Обычно производилось несколько записей участка спектра 200 cm⁻¹, которые затем усреднялись и сшивались. Спектр нейтральной молекулы ET^0 регистрировался в геометрии обратного рассеяния при возбуждении He–Ne-лазером (632.8 nm).

Поляризованные спектры отражения $R(\omega)$ кристалла (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (№ 9) в спектральной области 700-5500 cm⁻¹ были измерены на ИК Фурье-спектрометре (Bruker-IFS-88) с ИК-микроскопом и поляризатором KRS-5, а в области 9000-40 000 сm $^{-1}$ — на микроспектрорефлектометре ГОИ с призмой Глана-Томпсона в качестве поляризатора при комнатной температуре. Диаметр светового зонда приборов — 75 и 25 µm соответственно. Измерения проводились при почти нормальном падении света на естественно выросшую грань кристалла (100), параллельную проводящим слоям молекул ЕТ, для двух взаимно перпендикулярных направлений поляризации, для которых наблюдалось максимальное $(E \parallel x)$ и минимальное $(E \parallel y)$ отражения в диапазоне 700-5500 cm⁻¹. (Е — электрический вектор световой волны, х и у — найденные таким способом главные оптические оси кристалла). Для измерения выбирался наиболее совершенный участок поверхности. Абсолютная величина коэффициента отражения определялась по отношению к алюминиевому зеркалу и к эталонам: карбиду кремния и кварцу. Спектры оптической проводимости $\sigma(\omega)$ были получены из спектров отражения с помощью соотношений Крамерса-Кронига с использованием описанных в [12] способов экстраполяции в низкочастотную и высокочастотную области спектра.

2. Результаты измерений и обсуждение

На рис. 1 приведены спектры отражения $R(\omega)$ (*a*) и спектры оптической проводимости $\sigma(\omega)$ (b) кристалла $(ET)_8[Hg_4Br_{12}(C_6H_5Br)_2]$ для двух указанных выше направлений поляризации: Е || х и Е || у. По данным [8], х и у близки к кристаллографическим направлениям [021] и [011] соответственно. Из рис. 1, *а* видно, что в спектре $R(\omega)$ в ИК области в поляризации Е || х наблюдаются высокое отражение (0.4-0.5) с размытой колебательной структурой в области 1000-1500 cm⁻¹, резкий плазменный край при 3500-5000 cm⁻¹ и связанный с ним плазменный минимум вблизи 5200 cm⁻¹, обусловленные системой квазисвободных носителей заряда (дырок) в проводящих слоях ЕТ. На основании данных [9] можно заключить, что направление х слегка отклоняется от направления "лент" молекул ЕТ в кристалле (угол между ними составляет приблизительно 13°). В поляризации Е || у указанные электронные явления в спектре отражения выражены значительно слабее. В спектре $\sigma(\omega)$ (рис. 1, b) для Е || х наблюдается широкая электронная полоса во

Рис. 1. Поляризованные спектры отражения $R(\omega)$ (*a*) и оптической проводимости $\sigma(\omega)$ (*b*) органического металла (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (№ 9) для грани (100) в поляризациях **E** || **x** (*1*) и **E** || **y** (*2*), *T* = 293 K.

всей ИК области с максимумом ($\sigma_m = 350 \,\Omega^{-1} {
m cm}^{-1}$) вблизи 2000 cm⁻¹ и широкой колебательной структурой в области 1000-1500 ст⁻¹. Полученные нами спектры и их анизотропия практически совпадают с результатами [8] в перекрывающейся спектральной области $(700-5500 \text{ cm}^{-1})$. Небольшое различие заключается в несколько бо́льших значениях R и σ для обеих поляризаций в ИК области, а также в более резкой колебательной особенности при 1000-1500 cm⁻¹ (Е || х) в наших спектрах. В высокочастотной части спектров (выше плазменного минимума) наблюдается низкий "друдевский" фон, на который накладывается широкая полоса (20000-40000 cm⁻¹) с максимумом вблизи 34 000 cm⁻¹ для Е || х и 27 000 cm⁻¹ для Е || у, связанная с электронным внутримолекулярным переходом в молекуле ET, поляризованным вдоль ее длинной оси [13].

Рамановский спектр ЕТ⁰ приведен на рис. 2. Частоты линий этого спектра, которые приведены в табл. 1, совпадают с литературными данными [5] в пределах 1 ст⁻¹. Рамановские спектры образцов № 7, 9 и 2 измерялись в диапазоне $200-1600 \text{ cm}^{-1}$. На рис. 3 представлен спектр образца № 7. Частоты линий в рамановских спектрах образцов ЕТ⁰, № 7, 9 и 2 и их отнесение к нормальным колебаниям молекулы ET⁰ приведены в табл. 1. Отнесение линий было сделано нами на основании их интенсивностей, а также соответствующего отнесения линий в рамановском спектре сверхпроводника k-(ET)₂Cu[N(CN)₂]Br, представленном в работе [5]. В табл. 1 приведены также ионизационные сдвиги линий (т. е. сдвиги по отношению к линиям ET⁰). Линии 1051 и 1056 сm $^{-1}$, которые имеются в спектре образцов № 7 и 2, соответственно, не наблюдались в спектре ET⁰, поэтому мы относим их к линиям

Рис. 3. Рамановский спектр органического металла $(ET)_8$ [Hg₄Br₁₂(C₆H₅Cl)₂] (№ 7) в интервале 200–1600 cm⁻¹, $E_{exc} = 2.54 \text{ eV}$, T = 293 K.

$ \nu_i(\mathrm{ET^0}), $ $ \mathrm{cm}^{-1} $	Нормальное колебание	$ \frac{\nu_i (N_{0} 7)}{\mathrm{cm}^{-1}}, $	$ \frac{ \nu_i (N_{\mbox{\scriptsize 0}} 9)}{{ m cm}^{-1}}, $	$ \frac{\nu_i (N_{0} 2)}{\mathrm{cm}^{-1}}, $	Ионизационный сдвиг, cm ⁻¹		
1552	$ u_2(A_g)$	1541		1547	Nº 7	Nº 9	Nº 2
					-11		-5
1510	$ u_{27}(B_{1u})$						
1494	$ u_3(A_g)$	1456	1474	1455	-38	-20	-39
1442 ^a	$ u_{56}(B_{3g})$						
1409	$ u_4(A_g)$	1396					
		плечо					
1284	$ u_5(A_g)$						
1257 ^a	$ u_{57}(B_{3g})$						
1176	$ u_{38}(B_{2g})$						
1123	$ u_{21}(B_{1g})$						
		1051		1056			
1014	$ u_{58}(B_{3g})$						
1000	$ u_{59}(B_{3g}) $						
990	$ u_6(A_g)$	1000	999		0	-1	
919	$ u_7(A_g)$						
889 ^a	$\nu_{60}(B_{3g})$	891	891	892	+2	+2	+3
861	$ u_{22}(B_{1g})$						
765	o.o.p. ^b	782		783	+17		+18
688	$\nu_{61}(B_{3g})$	685	673		-3	-15	
654	$\nu_8(A_g)$	650	647		-4	-7	
626	$\nu_{62}(B_{3g})$						
487	$\nu_9(A_g)$	502	500	499	+15	+13	+12
441	$\nu_{10}(A_g)$			445			+4
349	$\nu_{63}(B_{3g})$						
334	$\nu_{64}(B_{3g})$						
310	$\nu_{11}(A_g)$	317	314		+7	+4	

Таблица 1. Линии рамановского спектра соединений ET^0 , $(ET)_8[Hg_4Br_{12}(C_6H_5Cl)_2]$ (№ 7), $(ET)_8[Hg_4Br_{12}(C_6H_5Br)_2]$ (№ 9), $(ET)_8[Hg(SCN)Cl_2]$ (№ 2) и их отнесение

^а Данные работы [5].

^b Внеплоскостные (out of plane) колебания.

Таблица 2. Заряд катиона ρ и рамановские частоты $\nu_3(A_g)$ в различных органических ион-радикальных солях молекулы ЕТ

ρ	Соединение ^а	$ u_3(A_g), \mathrm{cm}^{-1}$	Соединение ^b	$\nu_3(A_g),\mathrm{cm}^{-1}$
0	ET ⁰	1494	ET^{0}	1494
1			ETI ₃	1431
0.5	$(ET)_{8}Hg_{4}Br_{12}(C_{6}H_{5}Cl)_{2}$	1456	κ -(ET) ₂ Cu[N(CN) ₂]Br	1464
0.5	$(ET)_{8}Hg_{4}Cl_{12}(C_{6}H_{5}Cl)_{2}$	1472	κ -(ET) ₂ Cu[N(CN) ₂]Br	1459
0.5	$(ET)_8Hg_4Br_{12}(C_6H_5Br)_2$	1474	κ -(ET) ₂ Cu[(NCS) ₂	1461
0.5	(ET) ₂ Hg(SCN)Cl ₂	1455	κ -(ET) ₂ Cu ₂ (CN) ₃	1471
0.5	$(ET)_{4}Hg_{2.89}Br_{8}$	1462	k-(ET) ₄ Hg ₃ Cl ₈	1464

^а Исследованы в этой работе.

^b Приведены в [10,14].

анионов $[Hg_4Br_{12}(C_6H_5Cl)_2]^{-4}$ и $[Hg(SCN)Cl_2]^{-1}$ соответственно. Спектры металлов $(ET)_4Hg_{2.89}Br_8$ (№ 1) и $(ET)_8[Hg_4Cl_{12}(C_6H_5Cl)_2]$ (№ 8) были измерены в диапазоне 1400–1600 сm⁻¹, где расположены наиболее интенсивные линии валентных колебаний центральной и кольцевых С=С-связей $\nu_2(A_g)$ и $\nu_3(A_g)$. Частоты линии $\nu_3(A_g)$ для всех исследованных нами образцов, а также литературные данные [10,14] для ряда других проводящих солей ЕТ приведены в табл. 2. На рис. 4 сравниваются спектры образцов № 2, 7, 8 и 9 в области

1400–1600 сm⁻¹. На рис. 5 приведена зависимость частоты $\nu_3(A_g)$ от заряда ρ на катионе. В этот рисунок включены также данные работ [10,14] для других соединений. В исследованных нами соединениях с ленточной упаковкой заряд катиона равен формально +0.5. Как было указано выше, представленные на рис. 5 данные относятся к образцам с существенно различной упаковкой молекул ЕТ в слое: соединениям с κ -фазой, в которой молекулы ЕТ упакованы плоскость к плоскости во взаимно перпендикулярные димеры, и кристаллам с ленточной

Рис. 4. Рамановские спектры кристаллов k-ET₂[Hg(SCN)Cl₂] (N₂ 2), (ET)₈[Hg₄Br₁₂(C₆H₅Cl)₂] (N₂ 7), (ET)₈[Hg₄Cl₁₂(C₆H₅Cl)₂] (N₂ 8), (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (N₂ 9) в интервале частот 1400–1600 cm⁻¹. $E_{exc} = 2.54 \text{ eV}, T = 293 \text{ K}.$

упаковкой молекул. Видно, что для заряда на катионе +0.5 частоты для всех образцов лежат в пределах 20 сm⁻¹ и не зависят от способа упаковки. Обращает на себя внимание, что наибольшее различие величин $\nu_3(A_g)$ наблюдается для кристаллов (ET)₈[Hg₄Br₁₂(C₆H₅Cl)₂] (1456 сm⁻¹), (ET)₈[Hg₄Cl₁₂(C₆H₅Cl)₂] (1472 сm⁻¹) и (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (1474 сm⁻¹) с одним и тем же типом упаковки молекул ЕТ, но несколько отличающихся химической формулой аниона, что указывает на возможное заметное влияние последнего на частоту $\nu_3(A_g)$.

Как указано выше, кристалл (ET)₈[Hg₄Br₁₂(C₆H₅Br)₂] (N $_{\rm 9}$ 9) имеет фазовый переход в диэлектрическое состояние при 130 К [9]. Его рамановский спектр в области 1400–1600 сm⁻¹ измерялся также при $T \approx 100$ К, однако никаких существенных изменений колебания $\nu_3(A_g)$ в спектрах выше и ниже точки перехода не наблюдалось.

Как видно из рис. 3, в рамановском спектре наблюдался бесструктурный фон, сравнимый по интенсивности с наиболее сильной фононной линией. Такой фон наблюдался во всех исследованных образцах. Установлено, что этот фон не связан с рэлеевским рассеянием. Регистрация спектров в более широком диапазоне частот показала, что интенсивность фона возрастает с увеличением рамановского сдвига и в области примерно $2500 \,\mathrm{cm^{-1}}$ (при возбуждении линий 488 nm) имеется очень широкий частично деполяризованный максимум, который интенсивнее в НН-поляризации, чем в НV-поляризации, рис. 6. При внесении поправки на спектральную эффективность спектрометра максимум сохраняется, смещаясь к 3000 cm⁻¹. У образца № 9 фон и максимум сохранялись и при $T \sim 100 \,\mathrm{K}$.

Форма максимума несколько различна при возбуждении линиями 488 и 541.5 nm. При возбуждении линией 632.3 nm максимум не наблюдался, интенсивность спектра слегка уменьшалась по мере увеличения рамановского сдвига вплоть до 3000 cm⁻¹, а при дальнейшем увеличении сдвига (т.е. при больших длинах волн) наблюдался резкий рост интенсивности, связан-

Рис. 5. Зависимость частоты $\nu_3(A_g)$ от заряда ρ на катионе. $I - \text{ET}^0$; 2 - № 7, 8 и 9; 3 - № 1 и 2; 4 - [10]; 5 - [14].

Рис. 6. Рамановский спектр образца № 7 в интервале $1000-5500 \,\mathrm{cm^{-1}}$ в *НН* (1) и *НV* (2) поляризации. $E_{\mathrm{exc}} = 2.54 \,\mathrm{eV}, T = 293 \,\mathrm{K}.$

ный, по-видимому, с люминесценцией. (Заметим, что у нейтральной молекулы ET⁰ максимум люминесценции наблюдался при 15 492 сm⁻¹. Значительно более слабая полоса люминесценции в этой же области наблюдалась у образца № 9 при температуре ~ 100 К при возбуждении линией 488 nm).

Природа фона и широкого максимума в области $3000 \, {\rm cm^{-1}}$ в настоящее время не ясна. Предположительно они могли бы быть связаны с резонансным рамановским рассеянием на одночастичных и коллективных электронных возбуждениях. В связи с этим отметим, что в работе [15] проведен теоретический анализ квазичастичного рамановского спектра в высокотемпературных сверхпроводниках при $T > T_c$. Показано, что этот спектр имеет широкий максимум в области примерно $2000 \,\mathrm{cm}^{-1}$, его интенсивность и положение зависят от фононного спектра и электрон-фононного взаимодействия. Отметим, также, что максимум в области $2000\,{\rm cm^{-1}}$ наблюдался в спектре проводимости исследованных нами соединений, полученных из спектров отражения с помощью преобразования Крамерса-Кронига.

Альтернативным объяснением фона и широкого максимума может быть рассеяние из поверхностного слоя, деградированного под воздействием воздуха.

Список литературы

- Э.Б. Ягубский, И.Ф. Щеглов, В.Н. Лаухин, П.А. Кононович, М.В. Карцовник, А.В. Зварыкина, Л.И. Буравов. Письма в ЖЭТФ 39, *1*, 12 (1984).
- [2] J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H.H. Wang, A.M. Kini, M.-H. Whangbo. Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties and Theory. Prentice Hall: Englewood Cliffs, NJ (1992). 367 p.
- [3] A.M. Kini, U. Geiser, H.H. Wang, K.D. Carlson, J.M. Williams, W.K. Kwok, K.G. Vandervoort, J.E. Thompson, D. Sturka, D. Jung, M.-H.-Whangbo. Inorg. Chem. 29, 2555 (1990).
- [4] M.Z. Aldoshina, R.N. Lyubovskaya, S.V. Konovalikhin, O.A. Dyachenko, G.V. Shilov, M.K. Makova, R.B. Lyubovskii. Synth. Metals 55–57, 1905 (1993).
- [5] J.E. Eldridge, Y. Xie, H.H. Wang, J.M. Williams, A.M. Kini, J.A. Schueter. Spectrochimica Acta, Part A, 52, 45 (1996).
- [6] O.O. Drozdova, V.N. Semkin, R.M. Vlasova, N.D. Kushch, E.B. Yagubskii. Synth. Metals 64, 17 (1994).
- [7] Р.Н. Любовская, Т.В. Афанасьева, О.А. Дьяченко, В.В. Гриценко, Ш.Г. Мкоян, Г.В. Шилов, Р.Б. Любовский, В.Н. Лаухин, М.К. Макова, А.Г. Хоменко, А.В. Зварыкина. Изв. АН СССР. Сер. хим. 12, 2872 (1990).
- [8] M.G. Kaplunov, R.N. Lyubovskaya. J. Phys. I France 2, 1811 (1992).
- [9] В.В. Гриценко, О.А. Дьяченко, Г.В. Шилов, Р.Н. Любовская, Т.В. Афанасьева, Р.Б. Любовский, М.К. Макова. Изв. АН. Сер. хим. 4, 894 (1992).
- [10] H.H. Wang, J.R. Ferraro, J.M. Williams, U. Geiser, J.A. Schlueter. J. Chem. Soc., Chem. Commun. 1893 (1994).
- [11] R.B. Lyubovskii, R.N. Lyubovskaya, O.A. Dyachenko. J. Phys. I France 6, 1609 (1996).

- [12] R.M. Vlasova, S.Ya. Priev, V.N. Semkin, R.N. Lyubovskaya, E.I. Zhilyaeva, E.B. Yagubskii. Synthetic Metals 48, 129 (1992).
- [13] Р.М. Власова, О.О. Дроздова, Р.Н. Любовская, В.Н. Семкин. ФТТ 37, 3, 703 (1995).
- [14] K.D. Truong, D. Achkir, S. Jandl, M. Poirier. Phys. Rev. B51, 16168 (1995).
- [15] В.Н. Костур, Г.М. Элиашберг. Письма в ЖЭТФ 53, 7, 373 (1991).