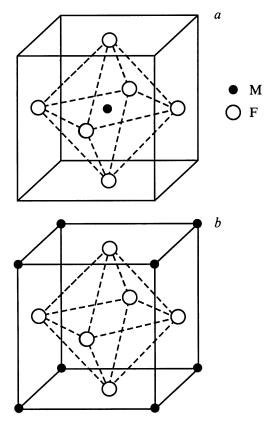
Динамика решетки кристаллов MF_3 (M = AI, Ga, In)

© В.И. Зиненко, Н.Г. Замкова

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: zinenko@iph.krasnoyarsk.su

(Поступила в Редакцию 7 декабря 1999 г.)


Фононные спектры, эффективные заряды Борна и диэлектрические константы ε_{∞} для кристаллов $\square AlF_3$, $\square GaF_3$, $\square InF_3$ (\square — вакансия) вычислены в рамках обобщенного метода Гордона–Кима. В вычисленных спектрах колебаний решетки нет мнимых частот колебаний. Это свидетельствует о стабильности кубической фазы этих соединений в противоречии с экспериментом, где наблюдается структурный переход из кубической в ромбоэдрическую фазу. Высказано предположение, что такой переход в $\square AlF_3$, $\square GaF_3$ и $\square InF_3$ связан со структурными дефектами. Вычисленный спектр колебаний решетки "полностью дефектного" кристалла $\square MF_3$ (M=Al, Ga, In) показывает сильную нестабильность кубической фазы. Кубическая фаза кристаллов $M_3M_{(1-x)}F_3$ оказывается нестабильной для малых x<0.05 в приближении "среднего кристалла".

Авторы выражают благодарность Красноярскому краевому фонду науки (грант № 8E0039) и INTAS (грант № 97-10177) за финансовую поддержку работы.

Структурные фазовые переходы и природа нестабильности в соединениях со структурой перовскита изучаются экспериментально и теоретически в течение многих десятилетий. Большинство теоретических исследований были посвящены окислам со структурой перовскита. Расчеты зонной структуры, динамики кристаллической решетки и статической механики сегнетоэлектрических и антисегнетоэлектрических фазовых переходов, проведенные в рамках метода функционала плотности, дают удовлетворительный результат (см., например, [1–6]). В результате этих расчетов к настоящему времени достигнуто значительное понимание причин неустойчивости кристаллической решетки и природы возникновения сегнето- и антисегнетоэлектричества в окисных соединениях со структурой перовскита. В то же время галогенным соединениям со структурой перовскита, в которых, как правило, наблюдаются структурные фазовые переходы, связанные с нестабильностью кристаллической решетки к антиферродисторсионным искажениям, в расчетах ab initio уделяется значительно меньшее внимание.

Соединения $\square MF_3$ ($M = Al,Ga,In, \square - Baкансия)$ изоморфны структуре ReO₃. Эта структура — наиболее простая из перовскитоподобных структур. Ионы металла занимают центр октаэдра, в вершинах которого находятся анионы (рис. 1, а). Центры анионных кубооктаэдров пусты. Кристаллы МГ3 испытывают фазовый переход из кубической в ромбоэдрическую фазу, связанный с "поворотом" октаэдра вокруг оси третьего порядка кубической ячейки [7-9]. Фазовый переход и динамика решетки кристаллов AlF₃, GaF₃ и InF₃ были предметом нескольких экспериментальных и теоретических работ, включая исследования структуры методом дифракции рентгеновских лучей, калометрические измерения, измерения предельных раман-активных частот колебаний решетки в искаженной ромбоэдрической фазе и вычисления фононного спектра кубической фазы в модели жесткого иона с подгоночными параметрами короткодействующих взаимодействий [8,9]. При изучении фазовых переходов типа смещения и понимания причин неустойчивости кристаллической решетки знания о полном фононном спектре кристалла очень важны.

Цель данной работы — вычисление фононных спектров, динамических зарядов Борна и высокочастотных диэлектрических проницаемостей кристаллов AlF₃, GaF₃

Рис. 1. Элементарные ячейки кристаллов $\square M$ \mathbf{F}_3 (a) и гипотетических кристаллов $M \square \mathbf{F}_3$ (b).

и InF₃ в рамках микроскопической модели ионного кристалла, учитывающей деформацию и поляризуемость ионов [10]. Метод вычислений кратко изложен в разд. 1. В разд. 2 представлены результаты вычислений. Показано, что в рамках используемой модели в вычисленном спектре колебаний решетки кубической фазы рассматриваемых кристаллов отсутствуют колебания с мнимыми частотами, что свидетельствует об устойчивости кубической фазы при нулевой температуре. Но в спектре колебаний имеется ветвь (между точками R и M в зоне Бриллюэна) с аномально низкими значениями частот колебаний. Мы вычислили спектр колебаний гипотетического кристалла с той же кубической решеткой $M\Box F_3$, в котором катионы занимают центры кубооктаэдра (рис. 1, b). В этих кристаллах в колебательном спектре имеется большое число колебаний с мнимыми частотами. В приближении "среднего кристалла" вычислен спектр колебаний кристаллов $M_x M_{1-x} F_3$. Найдено, что кубическая фаза таких кристаллов нестабильна при малых значениях x < 0.05.

1. Метод вычислений

В данной работе для расчета спектра колебаний кристаллической решетки использовалась предложенная Ивановым и Максимовым [10] модель ионного кристалла, обобщающая приближение Гордона-Кима учетом влияния кристаллического окружения на деформируемость и поляризуемость ионов. Полная электронная плотность кристалла в этой модели записывается как

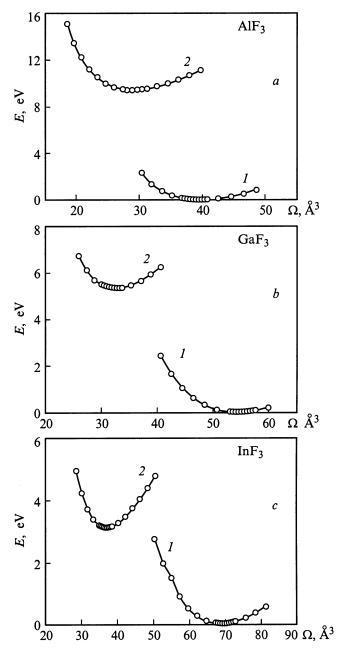
$$ho(\mathbf{r}) = \sum_i
ho_i(\mathbf{r} - \mathbf{R}_i),$$

где суммирование проводится по всем ионам в кристалле. Полная энергия кристалла в приближении парного взаимодействия имеет вид

$$E_{cr} = \frac{1}{2} \sum_{i \neq j} \frac{Z_i Z_j}{|\mathbf{R}_i - \mathbf{R}_j|} + \sum_i E_i^{self}(R_w^i)$$
$$+ \frac{1}{2} \sum_{i \neq j} \Phi_{ij}(R_w^i, R_w^j, |\mathbf{R}_i - \mathbf{R}_j|), \tag{1}$$

где Z_i — заряд i-го иона,

$$\Phi_{ij}(R_w^i, R_w^j, |\mathbf{R}_i - \mathbf{R}_j|) = E\{\rho_i(\mathbf{r} - \mathbf{R}_i) + \rho_j(\mathbf{r} - \mathbf{R}_j)\}$$
$$-E\{\rho(\mathbf{r} - \mathbf{R}_i)\} - E\{\rho(\mathbf{r} - \mathbf{R}_j)\}, \qquad (2)$$


энергия $E\{\rho\}$ вычисляется в приближении Томаса—Ферми и в локальном приближении для кинетической и обмен-корелляционной энергий [10]; $E_i^{self}(R_w^i)$ — собственная энергия иона. Электронная плотность индивидуального иона и его собственная энергия рассчитывались с учетом кристаллического потенциала, аппрокси-

мированного заряженной сферой (сфера Ватсона)

$$v(r) = egin{cases} Z_i^{ion}/R_w & r < R_w, \ Z_i^{ion}/r & r > R_w, \end{cases}$$

где R_w — радиус сферы Ватсона. Радиус сферы R_w^i для каждого иона определялся из условия минимума полной энергии кристалла.

Для расчета динамики кристаллической решетки в уравнение (2) необходимо добавить члены, описывающие изменение энергии при смещениях ионов из их

Рис. 2. Зависимость полной энергии кристалла от объема. Кривые 1 и 2 относятся к $\square MF_3$ и $M \square F_3$ структурам соответственно. Энергия отсчитывается в (a), (b) и (c) соответственно от -14965.6141, -61438.7235 и -168862.7272 eV.

Таблица 1. Равновесные значения параметров решетки, эффективных зарядов Борна Z^* , высокочастотной диэлектрической проницаемости ε_∞ и поляризуемостей ионов α

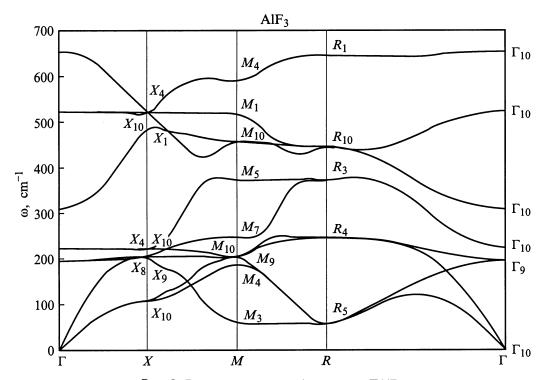
Кристалл	a_0 , Å(расчет)	a_0 , Å(эксперимент)	$Z^*(M)$	$Z_{\perp}^{*}(\mathrm{F})$	$Z_{\parallel}^{*}(\mathrm{F})$	$arepsilon_{\infty}$	α_M , Å ³	$\alpha_F, \text{Å}^3$
$\Box AlF_3$	3.42	3.56^{a}	3.08	-0.66	-1.76	1.86	0.03	0.65
\Box GaF ₃	3.80	3.69^{b}	2.87	-0.78	-1.32	1.64	0.12	0.69
$\square InF_3$	4.11	4.07^{b}	2.99	-0.79	-1.41	1.59	0.37	0.72

Примечание. ^а [8]. ^b [7].

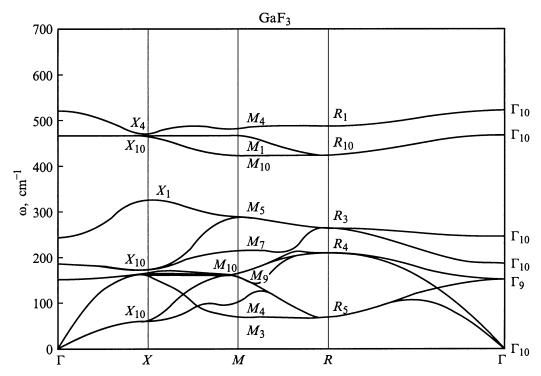
Таблица 2. Вычисленные частоты мод в точках $\Gamma(0,0,0)$ и $R(\pi/a,\pi/a,\pi/a)$ зоны Бриллюэна (PIB — модель "дышащего" иона; в PPIB учитываются деформируемость и поляризуемость ионов)

Мода	$\Box AlF_3$			□GaF ₃			\Box InF ₃		$M\square F_3$		
ттоди	PPIB	PIB	RI	PPIB	PIB	RI	PPIB	PIB	AL	Ga	In
$2\Gamma_{10}(3)$											
LO	651	735	765	521	564	553	449	495	465	407	357
TO	521	558	641	466	504	513	399	456	401	375	337
LO	307	503	481	245	374	392	200	304	350	306	294
TO	222	401	378	185	259	278	154	201	362 <i>i</i>	27	44 <i>i</i>
$\Gamma_9(3)$	194	240	219	152	172	194	126	137	225 <i>i</i>	148 <i>i</i>	143
$R_1(1)$	645	644	669	486	558	585	433	499	340	328	300
$R_{10}(3)$	445	446	487	265	267	265	193	195			
$R_4(3)$									449	376	311
$R_{3}(2)$	372	407	481	424	424	418	400	403	289	269	247
$R_4(3)$	246	415	383	210	305	338	189	195	272i	97	119
$R_5(3)$	58	79	50	68	73	50	63	65	490 <i>i</i>	359i	253 <i>i</i>

 Π р и м е ч а н и е. Результаты расчета в модели жесткого иона (RI), полученные в [9], приведены для сравнения. Вырожденность мод указана цифрой в круглых скобках. Частоты даны в ст $^{-1}$.


положений равновесия. При этом в расчетах спектра колебаний учитывались поляризуемость и деформированность ионов, вызванные изменением кристаллического окружения. Выражение для динамической матрицы записано в работе [11].

2. Результаты и их обсуждение


Равновесные значения параметров элементарной ячейки рассматриваемых кристаллов определялись из минимума полной энергии кристалла как функции объема (рис. 2). Эти значения вместе с экспериментальными данными приведены в табл. 1, где также приведены вычисленные значения поляризуемостей ионов, высокочастотных диэлектрических проницаемостей ε_{∞} и динамических зарядов Борна. Для ионов металла тензор эффективного заряда изотропен и его значение близко к номинальному значению заряда иона (+3). Для иона фтора имеются две компоненты тензора, относящиеся соответственно к смещениям иона фтора F- параллельно $Z_{||}^{*}(\mathrm{F})$ и перпендикулярно $Z_{\perp}^{*}(\mathrm{F})$ *М*–F связи. Как видно из табл. 1, имеется сильное различие между $Z_{||}^*(F)$ и $Z_{\perp}^{*}(F)$, как и в окислах со структурой перовскита, но величины $Z_{||}^*(F)$ значительно меньше, чем $Z_{||}^*(O)$.

Вычисленные спектры фононов AlF₃, GaF₃ и InF₃ показаны на рис. 3-5. Для сравнения с результатами вычислений в модели жесткого иона [9] в табл. 2 приведены значения частот колебаний в точках $\Gamma(0,0,0)$ и $R(\pi/a, \pi/a, \pi/a)$ зоны Бриллюэна. В табл. 2 также приводятся значения частот колебаний, вычисленных в данной работе в модели "дышащего" иона, т. е. без учета поляризуемостей ионов. Как видно из табл. 2, результаты вычислений в модели жесткого иона с подгоночными параметрами, описывающими короткодействующие взаимодействия, и в модели "дышащего" иона, свободной от подгоночных параметров, достаточно хорошо согласуются между собой. В то же время учет поляризуемостей ионов существенно влияет на частоты колебаний решетки, в частности значительно понижает LO-TO расщепление для частот ИК-активных мод.

Как видно из рис. 3-5 и из табл. 2, во всех рассматриваемых кристаллах в спектре колебаний нет мнимых частот, однако имеется слабо дисперсионная ветвь (между точками M и R в зоне Бриллюэна) с аномально низкими значениями частот ($\approx 60\,\mathrm{cm}^{-1}$). Такой же результат получен в модели жесткого иона [8,9]. Таким образом, в рамках использованного нами метода вычислений динамики решетки кубическая фаза в AlF_3 , GaF_3 и InF_3 остается стабильной до T=0 в противоречии

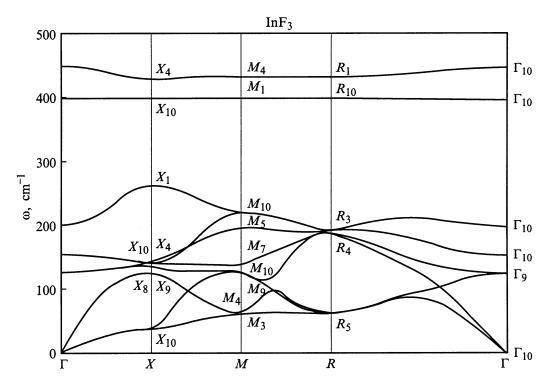

Рис. 3. Вычисленный спектр фононов для $\square AlF_3$.

Рис. 4. Вычисленный спектр фононов для \Box GaF₃.

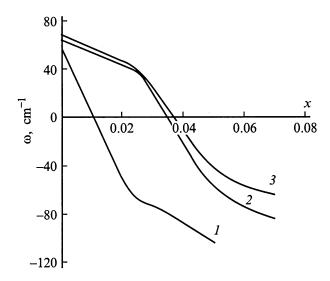
с экспериментальными данными, которые обнаруживают структурный фазовый переход в этих соединениях при конечной температуре. Возможной причиной нестабильности кубической фазы в рассматриваемых кристаллах могут быть нарушения идеальной структуры $\square MF_3$, когда малая часть ионов металла занимает вакантные

места в центре кубооктаэдра. Для проверки такого предположения мы рассчитали фононные спектры "полностью дефектной" гипотетической структуры $M \square F_3$ (M = Al,Ga,In). Полная энергия кристаллов в такой структуре значительно выше энергии в структуре $\square MF_3$ (рис. 2). Вычисленные спектры фононов $Al \square F_3$, $Ga \square F_3$

Рис. 5. Вычисленный спектр фононов для \Box InF₃.

и $In\Box F_3$ сильно отличаются от спектров $\Box AlF_3$, $\Box GaF_3$ и □InF₃. В случае "дефектной" структуры в спектре фононов имеется много мнимых частот колебаний и нестабильные моды занимают все фазовое пространство в первой зоне Бриллюэна. В табл. 2 приведены вычисленные значения частот колебаний решетки кристаллов $M\Box F_3$ в точках $\Gamma(0,0,0)$ и $R(\pi/a,\pi/a,\pi/a)$. Как видно из этой таблицы, наиболее "мягкой" модой является трижды вырожденная мода R_5 , принадлежащая граничной точке зоны Бриллюэна. Собственный вектор R_5 моды соответствует "повороту" октаэдра, в центре которого в данном случае нет иона металла. Экспериментально наблюдаемый фазовый переход в соединениях AlF₃, GaF₃ и InF₃ связан с конденсацией именно этой R₅ моды и далее будет обсуждаться только эта мода колебаний. Частота моды R_5 в обоих структурах $\square MF_3$ и $M \square F_3$ описывается одним аналитическим выражением

$$\omega^2(R_5) = \frac{4\pi e^2}{\Omega M_{\rm F}}(S+C),$$


где Ω — объем элементарной ячейки и $M_{\rm F}$ — масса фтора. Константа C описывает кулоновский вклад в $\omega^2(R_5)$ от точечных зарядов, а константа S включает все короткодействующие и диполь-дипольные дальнодействующие взаимодействия. Значения C и S для трех рассматриваемых кристаллов приведены в табл. 3. Можно видеть из этой таблицы, что сумма C и S в структуре $\square MF_3$ положительна, но имеет аномально малую величину для всех кристаллов. C другой стороны, в структуре $M \square F_3$ эта сумма вкладов отрицательна и большая по абсолют-

ной величине. Можно предположить, что в реальных кристаллах малая часть ионов металла занимает вакантные места в центре кубооктаэдра, образованного ионами фтора, и эта дефектность приводит к нестабильности кубической фазы. Для грубой оценки величины концентрации дефектов, при которой кубическая фаза становится нестабильной, был вычислен спектр колебаний "среднего кристалла" $M_x M_{1-x} F_3$ (M=Al,Ga,In). Зависимость $\omega(R_5)$ от концентрации x для "средних кристаллов" показана на рис. 6, из которого видно, что кубическая фаза при нулевой температуре оказывается нестабильной при достаточно малой концентрации дефектов.

Таким образом, в данной работе проведен расчет динамики кристаллической решетки кристаллов со структурой перовскита $\square AlF_3$, $\square GaF_3$ и $\square InF_3$. Вычисления проведены в рамках обобщенной модели Гордона–Кима, учитывающей поляризуемость и деформируемость ионов. Найдено, что в спектре колебаний решетки для всех

Таблица 3. Величины вкладов: кулоновского от точечных зарядов C, короткодействующего и дальнодействующего дипольдипольного S взаимодействий в $\omega^2(R_5)$ для $M\mathrm{F}_3$ в двух структурах

Кон	станта	$\square M \mathrm{F}_3$	$M\Box F_3$		
	C	0.68346	-0.82566		
S	Al Ga In	-0.65178 -0.62259 -0.61643	-0.83688 -0.17220 0.25450		

Рис. 6. Зависимость частоты моды $\omega(R_5)$ от концентрации x для $M_x M_{1-x} F_3$: I-M=Al, 2-M=Ga, 3-M=In. Отрицательное значение ω означает мнимую величину.

кристаллов при T=0 отсутствуют колебания с мнимыми частотами, что свидетельствует об устойчивости кубической фазы в этих кристаллах. Мы предполагаем, что наблюдаемый в этих кристаллах структурный фазовый переход из кубической в ромбоэдрическую фазу может быть связан со структурными дефектами, когда часть ионов металла занимает центры кубооктаэдров, вакантные в идеальной структуре. Причина образования таких дефектов нам не ясна. Поскольку полная энергия кристаллов в "полностью дефектной" структуре значительно превышает энергию в идеальной структуре, образование данного сорта дефектов за счет температуры представляется маловероятным. Однако такие дефекты, по-видимому, могут образоваться при росте кристалла. Высказанное в данной работе предположение о причине неустойчивости кубической фазы в кристаллах МГ3 нуждается в экспериментальной проверке.

Благодарим О.В. Иванова и Е.Г. Максимова за возможность использования программ расчета энергии и поляризуемости ионов.

Список литературы

- [1] R.E. Cohen, H. Krakauer. Ferroelectrics **136**, 65 (1992).
- [2] R.E. Cohen, H. Krakauer. Phys. Rev. **B42**, 6416 (1990).
- [3] D.J. Singh, L.L. Boyer. Ferroelectrics **136**, 95 (1992).
- [4] R.D. King-Smith, D. Vanderbilt. Phys. Rev. **B49**, 5828 (1994).
- [5] K.M. Rabe, U.V. Waghmare. Ferroelectrics 164, 15 (1995).
- [6] U.V. Waghmare, K.M. Rabe. Phys. Rev. **B55**, 6161 (1997).
- [7] F.M. Bremer, G. Garton, D.M.L. Goodminde. J. Inorg. Nucl. Chem. 9, 56 (1989).
- [8] P. Daniel, A. Bulou, M. Rousseau, J. Nouet, J.L. Fourquet, M. Leblanc, R. Burriel. J. Phys.: Condens. Matter 2, 5663 (1990).

- [9] P. Daniel, A. Bulou, M. Rousseau, J. Nouet, M. Leblanc. Phys. Rev. **B42**, 10545 (1990).
- [10] О.В. Иванов и Е.Г. Максимов. ЖЭТФ 108, 1841 (1995).
- [11] В.И. Зиненко, Н.Г. Замкова, С.Н. Софронова. ЖЭТФ **11**, 1742 (1998).