Особенности строения, диэлектрических и оптических свойств CdTiO₃

© Ю.В. Кабиров, М.Ф. Куприянов, Я. Дец*, П. Вавжала*

Ростовский государственный университет, 344090 Ростов-на-Дону, Россия * Силезский университет, PL-40-007 Катовицы, Польша

(Поступила в Редакцию 4 октября 1999 г.)

Экспериментально исследованы структура, оптические и диэлектрические свойства кристалла и керамики перовскитовой модификации CdTiO₃. Обнаружена мультипликация ячейки вдоль трех перовскитовых осей. Определены новые возможные пространственные группы симметрии: D_{2h}^{18} и D_{2h}^{21} . Изучено влияние малых доз радиационного воздействия на структуру и свойства перовскитовых кристаллов и керамики. Из анализа интенсивностей дифракционных отражений делается вывод об увеличении антипараллельных смещений атомов Cd в ячейке в результате процессов дефектообразования.

Среди двойных оксидов ATiO₃ (A-Ba, Pb, Sr, Ca, Cd) титанат кадмия (CdTiO₃) отличается тем, что в зависимости от условий кристаллизации он обладает либо структурой типа перовскита, либо ильменитоподобной структурой [1,2]. В ряду оксидных ниобатов ANbO₃ (A-Ag, K, Na, Li) соединения AgNbO₃, KNbO₃, NaNbO₃ всегда имеют перовскитовую структуру, а LiNbO3 ильменитоподобную [3]. Если LiNbO3 (а также LiTaO3) до сих пор никакими методами дополнительной обработки не удавалось перевести в перовскитовую модификацию, то CdTiO₃ высокотемпературным отжигом переводится из ильменитоподобной структуры в перовскитовую [2]. До сих пор неизвестно, является ли такой реконструктивный фазовый переход монотропным или энатиотропным (обратимым). Низкотемпературный сегнетоэлектрический фазовый переход в CdTiO₃ перовскитовой модификации при 50-60 К впервые был описан в [4] и позднее — в [5]. Это и определило главное внимание многих исследователей к изучению структуры и физических свойств этой фазы [6-12]. Ильменитоподобная модификация CdTiO₃ все еще остается слабо изученной [13,14], хотя она подобно LiNbO₃ и LiTaO₃ может быть сегнетоэлектрической с высокой температурой Кюри. До настоящего времени слабо исследованы особенности оптических, диэлектрических и других физических свойств CdTiO₃ в широком интервале температур и частот измерительных электрических полей. Слабо изучены и особенности структурных состояний CdTiO₃ двух модификаций, их температурные изменения, а также влияние различных дефектов на проявляемые физические свойства и структуру; низкотемпературный же фазовый переход в структурном отношении не изучался никем.

В настоящей статье приводятся результаты изучения деталей кристаллического строения, а также ряда оптических и диэлектрических свойств монокристаллов CdTiO₃ перовскитовой модификации.

1. Эксперимент

Монокристаллы CdTiO₃ выращивались из растворов в расплаве смесей $NaBO_2 + KBO_2 + CdTiO_3$ Проскуряковым и Спинко. Поликристаллические образцы CdTiO₃ приготовлялись из стехиометрических смесей CdO и TiO₂ по обычной технологии твердофазного синтеза. Изучение образцов CdTiO₃ методом порошковой рентгеновской дифракции показало, что ильменитоподобная модификация CdTiO₃ образуется при температурах синтеза $800-900^{\circ}$ С. После отжига образца при 1100° С в воздухе эта фаза становится перовскитовой.

Стехиометричность кристаллов и порошка CdTiO₃ перовскитовой и ильменитовой модификаций проверена методом рентгеноспектрального флуоресцентного анализа на EDAX-DX-95 с использованием эталонных смесей CdO и TiO₂.

Рентгеноструктурные исследования монокристаллов CdTiO₃ проводились на гониометре WBG-2 и на дифрактометре ДРОН-3М (Cu K_{α} -излучение). Оптические свойства кристаллов CdTiO₃ изучены на поляризационном микроскопе МИН-8 и в Силезском университете на специальной установке, позволяющей измерять двулучепреломление и его температурные зависимости в малых областях кристалла.

Диэлектрические свойства кристаллов CdTiO₃ (температурно-частотные зависимости диэлектрической проницаемости) измерены в интервале температур 20–310°C при частотах измерительных полей от 100 Hz до 20 kHz. Отметим, что исследования не обнаружили в поликристаллических образцах двух модификаций CdTiO₃ пироэлектрического и пьезоэлектрического эффектов.

2. Результаты эксперимента

2.1. Оптические исследования. Рельеф травления кристаллов очень похож на 180-градусную структуру доменов, выявляемых травлением в кристаллах BaTiO₃,

Рис. 1. Рельеф травления кристаллов CdTiO₃.

РbTiO₃ и других перовскитовых сегнетоэлектриках. Эти мелкие $(1-2 \cdot 10^{-4} \text{ cm})$ конфигурации ориентированы в двух взаимно-перпендикулярных направлениях параллельно граням кристалла (рис. 1). Кристаллы CdTiO₃ перровскитовой модификации являются ромбическими и, следовательно, характеризуются показателями преломления n_A , n_B , n_C соответственно ориентации оптической индикатрисы. В нашем случае пластинчатые кристаллы CdTiO₃ имеют нормалью к поверхности, как правило, направление [010], что позволило определить двулучепреломления в кристалле CdTiO₃ показана на рис. 2. Обращает на себя внимание незначительный излом $\Delta n(T)$ при температурах 200–250°C.

2.2. Результаты структурных исследований кристалла CdTiO₃ методами качаний и вращения было установлено, что вдоль оси качаний (вращения) расположено кристаллографическое направление [010] перовскитовой структуры. Анализ форм рефлексов показал, что кристалл не сдвойникован, но в то же время имеет развитую микроблочную структуру. В дальнейшем при изучении кристалла на дифрактометре методом раздельного сканирования кристалла (ω) и детектора (2 Θ) найде-

ны величины межблочных углов, которые составляют несколько угловых минут. Рентгенограммы вращения четко выявляют сверхструктурные (по отношению к перовскиту) слоевые линии, соответствующие удвоению периода $b_p = 3.803(4)$ Å перовскитой ячейки. Индицирование разверток по Вайссенбергу нулевой, первой и второй слоевых линий позволило установить следующее. Во-первых, выявлено удвоение параметров моноклинной перовскитовой ячейки a_p и c_p , которые равны $a_p = c_p = 3.790(3)$ Å и $\beta_p = 91.0(3)$ degree. С учетом сверхструктуры истинная симметрия кристалла CdTiO₃ — ромбическая с параметрами ячейки $\mathbf{A}_0 = 2\mathbf{b}_p, \mathbf{B}_0 = 2(\mathbf{a}_p + \mathbf{c}_p), \mathbf{C}_0 = 2(\mathbf{a}_p - \mathbf{c}_p), A_0 = 7.606(4),$ $B_0 = 10.607(5), C_0 = 10.831(5)$ Å, что соответствует в пределах точности результатам [1] и не подтверждает данные [9,10] об отсутствии мультипликации ромбической сверхструктурной ячейки по осям У0, Z0. Во-вторых, для наблюдаемых дифракционных отражений выявлены следующие закономерности: среди отражений Н0, К0, L_0 присутствуют только те, у которых $K_0 + L_0 = 2n;$ среди $0K_0L_0$ — лишь с $K_0 = 2n$, $L_0 = 2n$; среди H_0K_00 — с $K_0 = 2n$; для двух наблюдаемых рефлексов типа $0K_00$ — с $K_0 = 4n$. Эти закономерности отвечают неразличимым по погасаниям пространственным груп-

Рис. 2. Температурная зависимость двулучепреломления в кристалле CdTiO₃.

пам симметрии с базоцентрированными ромбическими ячейками $C_{2\nu}^{15} = Abm2$, $C_{2\nu}^{17} = Aba2$, $D_{2h}^{18} = Abam$, $D_{2h}^{21} = Abmm$. Предварительный анализ интенсивностей дифракционных отражений рентгеновских лучей и отсутствие явно выраженных признаков пьезоэлектрического и пироэлектрического эффектов при комнатной температуре позволяют отдать предпочтение центросимметричным группам D_{2h}^{18} и D_{2h}^{21} , как наиболее вероятным.

Дифрактометрические исследования кристалла CdTiO₃ показывают, что интенсивности сверхструктурных отражений типа H_0^{22} увеличиваются с увеличением H_0 (от 1 до 7) и при больших векторах обратной решетки **H** имеют такой же порядок величин, как и ряд основных (перовскитовых) отражений. Это свидетельствует о значительных антипараллельных смещениях атомов вдоль оси у перовскитовой ячейки (оси X_0 сверхструктурной ячейки).

В качестве проверки гипотезы о влиянии дефектов на структурное состояние кристаллов CdTiO₃ авторами изучено воздействие малых доз α - и γ -излучений ($\sim 10^{13}$ cm⁻²) от источника Ри-239. Результаты представлены в таблице.

Обратим внимание на то, что уменьшение интенсивностей перовскитовых дифракционных отражений в результате облучения сопровождается как увеличением, так и уменьшением интенсивностей ряда сверхструктурных отражений. Это позволяет предположить, что внесение даже малых концентраций радиационных дефектов в кристалл CdTiO₃ приводит к увеличению антипараллельных смещений атомов (преимущественно атомов Cd [1]). В результате облучения параметры перовскитовой ячейки увеличились: $a_p = 3.7774(3)$, $b_b = 3.8011(3)$ Å; после облучения: $a_p = 3.7809(3)$, $b_p = 3.8035(3)$ Å. Детали структурных исследований будут опубликованы в отдельной статье.

Изменение интенсивностей дифракционных отражений рентгеновских лучей кристалла CdTiO3 в результате α - и γ -облучения

Перовскитовые отражения			Сверхструктурные отражения		
$H_0K_0L_0$	I_0^*	I_r^*	$H_0K_0L_0$	I_0	I_r
222	420	350	122	30	170
422	40	40	322	16	20
622	1060	1040	522	40	40
822	230	160	722	88	88
244	50	40	144	280	280
444	50	40	344	18	15
266	400	380	544	45	44
466	90	90	744	43	97
288	10	10	166	345	320
022	390	380	366	217	240
044	1950	1150	566	185	185
066	240	80	188	540	520
088	750	90			
200	770	500			
400	2530	2160			
600	620	500			
800	1490	1320			

Примечание. I_0^* и I_r — скорости счета до и после воздействия излучения соответственно (s⁻¹).

Рис. 3. Температурные зависимости диэлектрической проницаемости кристалла CdTiO₃ до (*a*) и после γ -облучения (*b*) при различных частотах *f* (kHz): *1* — 0.1, *2* — 0.2, *3* — 0.4, *4* — 0.8, *5* — 1, *6* — 2, *7* — 4, *8* — 10, *9* — 20.

Результаты диэлектрических измерений, выполненных на монокристалле CdTiO₃ перовскитовой модификации, представлены на рис. 3. Обращают на себя внимание следующие особенности температурно-частотных зависимостей диэлектрической проницаемости кристалла ε CdTiO₃ до и после его γ -облучения на бетатроне Б-25/30 ($E_{\gamma} = 23$ MeV, доза $\sim 10^3$ R).

Во-первых, для данных двух состояний кристалла характерна сильная зависимость величин ε от частот измерительных электрических полей, особенно в области частот от 100 Hz до 1 kHz. Сами величины ε оказываются достаточно большими, достигая значений порядка 20 000 в области температур 200–300°С.

Вместе с тем явно выраженных максимумов диэлектрической проницаемости в данном интервале температур не наблюдается. Слабо выраженные максимумы ε приблизительно при температуре 280°С присутствуют лишь в режимах нагрева кристалла. Не исключено, что эти аномалии объясняются наличием в структуре дефектов (зарядовых ловушек), которые имеют значительные релаксационные времена.

Во-вторых, кривые температурных зависимостей ε необлученного кристалла CdTiO₃ на относительно низких частотах после нагрева при охлаждении смещаются в область высоких температур, а после радиационного воздействия — в область низких температур. Можно предполагать, что в первом случае при высоких температурах происходит отжиг ростовых дефектов кристалла. Во втором случае в результате облучения в кристалле наряду с изменениями структуры, вызванными γ -излучением, создаются дефекты другого рода, что и определяет отмеченные особенности зависимостей $\varepsilon(T)$. Выяснение причин сильной низкочастотной дисперсии представляет отдельную задачу для дальнейших исследований.

Авторы выражают благодарность за помощь в проведении части эксперимента Е.И. Экнадиосянц, Ю.Н. Захарову.

Список литературы

- [1] H.D. Megaw. Proc. Phys. Soc. 58, 133 (1946).
- [2] М.Л. Шолохович, О.П. Крамаров, Б.Ф. Проскуряков, Е.И. Экнадиосянц. Кристаллография 13, 1102 (1968).
- [3] H.D. Megaw. Acta Cryst. 7, 187 (1954).
- [4] Г.А. Смоленский. ДАН СССР 70, 405 (1950).
- [5] T. Sugai, M. Wada. Jap. J. Appl. Phys. 18, 1709 (1979).
- [6] Г.А. Смоленский. ДАН СССР 85, 985 (1952).
- [7] М.А. Якубовский, В.И. Заметин, Л.М. Рабкин. Изв. вузов. Физика 1, 150 (1978).
- [8] И.Н. Гейфман, М.Л. Шолохович, В.И. Молочаева, В.Э. Дугин. ФТТ 25, 2506 (1983).
- [9] H.F. Kay, J.L. Miles. Acta Cryst. 10, 213 (1957).
- Физика твердого тела, 2000, том 42, вып. 7

- [10] S. Sasaki, Ch.T. Prewitt, J.D. Bass, W.A. Schulze. Acta Cryst. C43, 1668 (1987).
- [11] E.J. Baran, J.L. Botto, Z. Anorg. Allg. Chem. 448, 188 (1979).
- [12] X. Lin, R.C. Liebermann. Phys. Chem. Minerals 20, 171 (1993).
- [13] М.Л. Шолохович, О.П. Крамаров, Б.Ф. Проскуряков, Е.К. Зворыкина. Кристаллография 14, 1021 (1969).
- [14] G.L. Catchen, S.J. Wukitch, D.M. Spaar. Phys. Rev. B42, 4, 1885 (1990).