Переход от режима Кондо к дальнему магнитному порядку в системе $Fe_xV_{1-x}S$

© Г.В. Лосева, С.Г. Овчинников, А.Д. Балаев, Н.Б. Иванова, Н.И. Киселев

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: sgo@post.krascience.rssi.ru

(Поступила в Редакцию 10 ноября 1999 г. В окончательной редакции 24 декабря 1999 г.)

Сообщаются результаты электрических и магнитных измерений системы твердых растворов $Fe_x V_{1-x}S$ с $x \leq 0.5$. Для малых x (x < 0.01) обнаружен максимум в температурной зависимости удельного сопротивления $\rho(T)$, характерный для эффекта Кондо. Для x > 0.1 в системе устанавливается дальний магнитный порядок с $T_K \sim 100$ К. В окрестности x = 0.05 наблюдается переход от режима примесных ионов Fe^{2+} к магнитоупорядоченной фазе. Электронные свойства $Fe_x V_{1-x}S$ типичны для сильно коррелированных электронных систем. Как из электрических, так и из магнитных данных следует, что наибольшая делокализация носителей имеет место при x = 0.4.

Авторы благодарят РФФИ за финансовую поддержку (грант № 99-02-17405).

Множество соединений ванадия, имеющих различную кристаллическую структуру, например оксидные шпинели $\text{Li}_x \text{Me}_{1-x} \text{V}_2 \text{O}_4$ (Me–Zn, Mg) [1], перовскиты $\text{Sr}_x \text{La}_{1-x} \text{TiO}_3$ [2], сульфиды со сверхструктурой типа NiAs, такие как $\text{Me}_x \text{V}_{1-x} \text{S}$ (Me — 3*d*-металл) [3,4], обладают переходом металл–диэлектрик и активно исследуются с целью понимания особенностей электронного и магнитного состояний в высококоррелированных электронных системах. В подобных электронных системах существенную роль играют спиновые флуктуации.

В настоящей работе сообщаются результаты температурных исследований удельного электросопротивления ρ и намагниченности σ соединений системы Fe_xV_{1-x}S составов 0 < $x \le 0.5$ в интервале 4.2–300 К. Концентрационные зависимости ρ и σ для составов 0.1 $\le x \le 0.5$ представлены в [3].

1. Техника эксперимента

Одинаковая для всех составов системы технология синтеза поликристаллических образцов $Fe_xV_{1-x}S$ описана в [3].

Измерения удельного сопротивления проведены четырехзондовым потенциометрическим методом на постоянном токе. Образцы для резистивных измерений прессовались в форме параллелепипедов размерами 10 × 5 × 2 mm и отжигались в вакуумированных кварцевых ампулах при 1200 К в течение часа.

Намагниченность измерялась на автоматизированном вибрационном магнитометре со сверхпроводящим соленоидом в магнитном поле до 0.1 Т.

Температурные измерения действительной компоненты начальной магнитной восприимчивости χ' проведены на установке с мостом индуктивности и фазочувствительным детектором. Магнитные и резистивные измерения выполнены на одних и тех же образцах.

2. Экспериментальные результаты

2.1. Рентгеноструктурный и ДТА-анализы. Рентгеноструктурные исследования при $T = 300 \, {\rm K}$ соединений $Fe_xV_{1-x}S$ с изоморфным замещением V на Fe показали, что при $0.1 \le x \le 0.5$ эти составы изоструктурны V_5S_8 (моноклинная сверхструктура $F2/m-C^3$) [3]. Составы с малой концентрацией железа x = 0.005, 0.01,0.02, 0.05 имели искаженную сверхструктуру, близкую V₅S₈. У всех исследуемых составов в кривых ДТА были обнаружены два обратимых эндоэффекта при температуре 800-900 К, попадающие в область перехода металлдиэлектрик исходного моносульфида VS [3]. В настоящей работе температурная область ДТА-исследований была расширена до 1300 К, что позволило обнаружить для составов с 0.1 $\leq x \leq$ 0.5 на кривых ДТА при 1020-1100 К пик, соответствующий температуре Кюри θ_C , что послужило косвенным методом ее определения.

2.2. Электросопротивление. Концентрационная зависимость удельного электросопротивления при 80 и 300 К показывает резкое возрастание величины р до $0.6 \Omega \cdot \text{ст}$ для x = 0.1 при комнатной температуре с последующим падением на порядок при увеличении концентрации железа, что свидетельствует о наибольшей локализации электронов при x = 0.1. На рис. 1 представлены кривые температурной зависимости $\rho(T)$ для составов с малой концентрацией железа. На рис. 1, а видно, что для состава с x = 0.005 (0.25 at.% Fe)зависимость $\rho(T)$ имеет максимум при $T \sim 90$ К. Подобное поведение $\rho(T)$ обнаружено для разбавленных сплавов металлов, содержащих малые концентрации парамагнитных примесей в кристаллической решетке при отсутствии магнитного порядка (эффект Кондо [5]).

Рис. 1. Температурные зависимости удельного электросопротивления образцов $\operatorname{Fe}_x \operatorname{V}_{1-x} S$ для составов x = 0.005 (*a*) и x = 0.05 (*b*).

Величина пика в $\rho(T)$ при этом зависит от концентрации парамагнитных примесей и внешнего магнитного поля, которые, возрастая, подавляют эффект.

По мере увеличения концентрации железа до x = 0.05 при общем увеличении величины сопротивления более чем на 2 порядка обнаружено исчезновение пика на кривой $\rho(T)$, хотя следы температурной аномалии около 90 К еще прослеживаются (рис. 1, *b*). При T > 90 К ход кривых $\rho(T)$ для обоих составов близок к активационному.

Влияние дальнейшего увеличения концентрации железа отражено на рис. 2, из которого видно, что зависимость $\rho(T)$ выполаживается с ростом *x* и при *x* = 0.4 реализуется полуметаллический тип проводимости во всей исследованной области температур.

2.3. Магнитные свойства. Измерения низкочастотной магнитной восприимчивости $\chi'(T)$ не зарегистрировали дальнего магнитного порядка в образцах с концентрацией железа x < 0.1. Что касается составов с большей концентрацией железа, то, как видно из представленных на рис. 3 кривых намагничивания, поле насыщения примерно одинаково для всех образцов с $x \ge 0.1$, при этом величина намагниченности является существенно различной. Высокие значения θ_C , по-видимому, обуславливают тот факт, что значения $\sigma(H)$ при 68 и 300 К различаются не более, чем на 5%. Выход кривых намагничивания на насыщение в области магнитных полей около 0.1 Т и высокие значения намагниченности свидетельствуют о безусловном присутствии в обменных взаимодействиях ферромагнитной компоненты, что также подтверждается наличием петель гистерезиса с коэрцитивной силой $H_C \sim (3-5) \cdot 10^{-4}$ Т.

Рис. 2. Температурные зависимости удельного электросопротивления образцов Fe_xV_{1-x}S. *x*: I = 0.1, 2 = 0.2, 3 = 0.3, 4 = 0.4, 5 = 0.5.

Рис. 3. Кривые намагничивания образцов $Fe_xV_{1-x}S$. I = 0.1, 2 = 0.2, 3 = 0.4.

Рис. 4. Концентрационные зависимости магнитного момента *М* на атоме железа.

Рис. 5. Концентрационные зависимости температуры Кюри θ_C .

Рассчитанные из кривых намагничивания значения магнитного момента M на атом железа приведены на рис. 4, а на рис. 5 — значения θ_C для различных составов. Интересно отметить корреляцию этих двух зависимостей в исследуемом интервале концентраций.

3. Обсуждение результатов

Согласно данным рентгеноструктурного анализа о сходстве структур $Fe_xV_{1-x}S$ и V_5S_8 с упорядоченными слоями вакансий, атомы замещения Fe упорядочиваются в гексагональных слоях. Анализ электронной структуры, проведенный в [3], показал, что при малой концентрации каждый атом железа формирует локализованную

магнитную примесь S = 1. Рассеяние носителей тока на таких примесях и дает, как известно, эффект Кондо, поэтому неудивительно его проявление на кривых $\rho(T)$ с x = 0.005. Для $x \ge 0.1$ существует дальний магнитный порядок, где эффект Кондо подавляется. Переход между режимом Кондо и дальним магнитным порядком происходит при концентрации примесей x_C такой, что $T_K \sim x_C \theta_C$ [5], где T_K — температура Кондо, θ_C — температура Кюри концентрированной магнитной системы. В нашем случае $T_K \sim 100$ K, $\theta_C \sim 1000$ K, так что $x_C \sim 0.1$. В самом деле, для x = 0.05, как видно из рис. 1, *b*, поведение $\rho(T)$ — промежуточное с отчетливым спинфлуктуационным вкладом при T > 100 K, т.е. этот состав лежит, очевидно, в окрестности перехода от одного режима к другому.

Магнитоупорядоченная фаза характеризуется локализованными при $x \sim 0.1-0.2$ спинами на атомах Fe, что свидетельствует о сильных электронных корреляциях *d*-электронов Fe. C дальнейшим ростом *x* усиливается перекрытие волновых функций *d*-электронов и проявляется их частичная делокализация, что видно как из резкого падения магнитного момента на Fe, так и из выполаживания температурной зависимости сопротивления $\rho(T)$. Как по электрическим, так и по магнитным данным, максимальная делокализация происходит в окрестности x = 0.4.

Список литературы

- M. Onada, H. Imai, Y. Amako, H. Nagasawa. J. Phys. Rev. 57B, 7, 360 (1997).
- [2] Y. Fusukawa. Physica C285, 68 (1997).
- [3] Г.В. Лосева, С.Г. Овчинников, Г.А. Гайдалова, Э.К. Якубайлик, Н.И. Киселев. ФТТ 40, 10, 1890 (1998).
- [4] Г.В. Лосева, Л.И. Рябинкина, С.С. Аплеснин, А.Д. Балаев, А.В. Бовина, А.М. Воротынов, К.И. Янушкевич. ФТТ **39**, *8*, 1428 (1997).
- [5] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.