Лигандные сверхтонкие взаимодействия и модель парамагнитного центра Gd^{3+} в монокристаллах α -LilO₃

© А.А. Давитулиани, Д.М. Дараселия, Д.Л. Джапаридзе, Р.И. Мирианашвили, О.В. Ромелашвили, Т.И. Санадзе

Тбилисский государственный университет, 380028 Тбилиси, Грузия E-mail: root@boklomy.ge

(Поступила в Редакцию 14 декабря 1999 г.)

Методом радиочастотного дискретного насыщения проведено исследование лигандного сверхтонкого взаимодействия (СТВ) ионов Gd^{3+} в монокристаллах α -LiIO₃. Определены компоненты тензоров лигандных СТВ. На основе анализа полученных результатов предложена модель парамагнитного центра и обсуждается механизм искажения решетки.

Одним из материалов квантовой электроники, который на протяжении ряда лет интенсивно изучался различными, в том числе радиоспектроскопическими, методами, являются монокристаллы йодата лития α -LiIO₃, обладающие исключительными нелинейно-оптическими свойствами. К концу 80-х годов различными авторами были исследованы спектры ЭПР почти всех ионов группы железа в этом кристалле. Проведенные нами методом радиочастотного дискретного насыщения (РЧДН) исследования лигандных сверхтонких взаимодействий (СТВ) позволили однозначно установить модели внедрения этих ионов в решетку [1–3].

В поисках способов повышения лазерной прочности оптических преобразований в конце 80-х были впервые синтезированы монокристаллы йодата лития, легированные некоторыми элементами группы редких земель. Нами были изучены спектры ЭПР и определены параметры спин-гамильтониана ионов Er^{3+} и Gd^{3+} в α -LiIO₃ [4,5]. В настоящей работе представлены результаты исследования лигандных СТВ ионов Gd^{3+} и обсуждается модель парамагнитного центра.

1. Методика эксперимента

Методика РЧДН, которая является импульсным аналогом двойного электронно-ядерного резонанса, подробно описана в [6]. Эксперименты проводились на супергетеродинном спектрометре 3 сантиметрового диапазона при температуре жидкого гелия. Монокристаллы йодата лития выращивались методом испарения раствора при температуре 40-50°C на Кировоканском химическом заводе. При исследовании спектров ЭПР было обнаружено, что отжиг кристаллов приводит к увеличению интенсивности линий ЭПР Gd³⁺ почти на порядок. Поскольку йодат лития термически неустойчив выше 75°С, была разработана методика, позволившая поднять температуру отжига до 200°С. Монокристаллы α-LiIO₃ помещались в бомбу высокого давления — изготовленный из бронзы полый толстостенный цилиндр с завинчивающейся крышкой, которая имела герметизирующую прокладку из отожженной меди. Вместе с образцом в бомбу помещались кристаллы йода, которые при возгонке создавали в ней избыточное давление паров йода. Бомба погружалась в сосуд с глицерином и нагревалась до нужной температуры. Эксперименты проводились на образцах, отожженных в течение двух часов при температуре 200°С с последующим естественным охлаждением. Концентрация Gd в шихте составляла от 10^{-3} до 10^{-2} mol.% (предельная для редкоземельных элементов).

2. Кристаллическая структура

Гексагональная модификация (α -фаза) йодата лития принадлежит к пространственной группе P6₃. Структура образована ковалентными комплексами IO₃ в форме правильных тригональных пирамид, главные оси которых совпадают с осью шестого порядка с. Вследствие сильного взаимодействия между соседними группами IO₃ образуется прочная трехмерная сетка, в октаэдрических пустотах которых располагаются ионы лития. На рис. 1 приведены проекции кристаллической решетки на две плоскости, параллельную и перпендикулярную оси с кристалла.

3. Экспериментальные результаты и обсуждение

Спектры РЧДН исследовались только для ядер лития, поскольку для них лигандные СТВ, как показывает опыт, носят чисто дипольный характер, в то время как для ядер йода они содержат значительный ковалентный вклад. Измерялись спектры в ориентации магнитного поля **B** || **c** для различных электроных переходов и угловые зависимости спектров при вращении магнитного поля в плоскости, перпендикулярной **c**. Такая угловая зависимость для электронного перехода $M = -5/2 \leftrightarrow M = -3/2$ приведена на рис. 2 (точки). Легко заметить качественное сходство этого графика с аналогичными угловыми зависимостями для ионов группы железа (см., например, [1,2]). В случае Gd³⁺, однако, линии A и B, соответствующие

Рис. 1. Кристаллическая структура α -LiIO₃ в двух проекциях: параллельно $(A \rightarrow A')$ и перпендикулярно $(B \rightarrow B')$ оси с. $a: (A \rightarrow A')$ сплошными линиями отмечены те группы IO₃, в которых атомы йода лежат в плоскости сечения; $b: (B \rightarrow B')$ сплошными линиями отмечены те группы IO₃, в которых в плоскости сечения лежат атомы кислорода. Остальные группы даны пунктиром. Атомы лития, для которых измерено лигандное СТВ, пронумерованы. $a_0 = 5.4815$, $c_0 = 5.1709$ Å.

ядрам лития на оси с (Li(3) и Li(4)), не являются изотропными. Расчет показывает, что эта анизотропия связана с угловой зависимостью резонансного магнитного поля линии ЭПР, вызванной наличием членов тонкой структуры в электронном гамильтониане Gd^{3+} , и не содержит вклада от недиагональных элементов тензора лигандного СТВ.

Выберем систему координат с центром на ядре Li(0), осью Z, совпадающей с гексагональной осью с кристалла, и осью X вдоль направления Li(0)–Li(8) (рис. 1). Согласно [1], угловая зависимость линий РЧДН эквивалентных пар ядер лития Li(5) и Li(8) в плоскости Z = 0, пар Li(11) и Li(14), а также Li(17) и Li(20), лежащих в плоскостях $Z = \pm c_0/2$ соответственно для каждого электронного состояния $|\tilde{M}\rangle$ перехода $|\tilde{M}\rangle \leftrightarrow |\tilde{M}'\rangle$, описывается формулой

$$\nu = \sqrt{\begin{cases} \left(\gamma B - S_{\perp}^{\bar{M}} A_{xx}\right)^2 + \left(S_{\perp}^{\bar{M}} A_{xz}\right)^2 \right\} \cos^2 \varphi} + \\ + \left\{\gamma B - S_{\perp}^{\bar{M}} A_{yy}\right\}^2 \sin^2 \varphi}, \quad (1)$$

где $A_{xz} = 0$ для ядер Li(5) и Li(8). Здесь A_{ik} — компоненты тензора лигандного СТВ, $S_{\perp}^{\bar{M}} = \langle \bar{M} | \hat{S}_x | \bar{M} \rangle$ — эффективное магнитное квантовое число, $| \bar{M} \rangle$ — линейная комбинация состояния с проекцией электронного спина M (для Gd³⁺ S = 7/2), которая диагонализирует полный

Рис. 2. Угловая зависимость спектра РЧДН ядер лития для α -LiIO₃ в плоскости, перпендикулярной оси с. A - Li(3), B - Li(4), C - Li(5)-Li(10), D - Li(11)-Li(22). Кривые A имеют квадрупольное расщепление Q = 51 kHz. $S_{\perp}^{\tilde{M}} = -1.4811$, $S_{\perp}^{\tilde{M}'} = -2.4885$.

электронный гамильтониан Gd³⁺ [4]. Угловые зависимости остальных пар ионов получаются при замене в (1) φ на $\varphi \pm 60^{\circ}$.

Спектр ядер Li(3) и Li(4) (A и B), расположенных на одной оси **с** с Gd³⁺, описывается формулой

$$\nu = \gamma B - S_{\perp}^{\bar{M}} A_{xx},\tag{2}$$

причем для ядра A наблюдается квадрупольное расщепление Q = 51 kHz (для Li⁷ I = 3/2), для остальных ядер лития квадрупольные расщепления не разрешаются.

Небольшая угловая зависимость линий A и B, как отмечалось, связана только с угловой зависимостью линии ЭПР в плоскости, перпендикулярной оси **c**, и Gd³⁺ является единственным из всех исследованных в α -LiIO₃ методом РЧДН ионом, для которого она наблюдается. Это обстоятельство предоставляет возможность делать выводы о направлении кристаллического электрического поля и об искажении координационного кислородного октаэдра магнитного иона. С этой целью при математической обработке спектров РЧДН мы задавали магнитное поле в (1) в аналитической форме в виде аппроксимирующей формулы

$$B = B_1 + B_2 \cos^2(3\varphi + \Delta\varphi), \qquad (3)$$

где B_1 и B_2 определялись методом наименьших квадратов из угловых зависимостей спектров ЭПР Gd³⁺ работы [4]. Параметры $B_1 = 296.96$ и $B_2 = 1.49$ mT с большой степенью точности аппроксимируют эту зависимость для перехода $-5/2 \leftrightarrow -3/2$. Поскольку тензоры СТВ A_{ik} определены в описанной выше системе координат, а ось X' кристаллического поля априори неизвестна (ось Z'совпадает с осью с), в формулу (3) введен параметр $\Delta \varphi$, угол между X и X', который определяется при математической обработке спектров РЧДН одновременно с компонентами тензоров СТВ A_{ik} .

Математическая обработка состоит в компьютерной минимизации дисперсии $\Sigma (\nu_i^{\text{calc}} - \nu_i^{\exp})^2$, взятой по всем измеренным экспериментальным точкам в ориентациях **В** || **с** и **В** \perp **с**. Минимизация проводилась по всем параметрам, причем в первую очередь по параметру $\Delta \varphi$.

Ядро	A_{zz}	A_{xx}	A_{yy}	A_{xz}	Δ
Li(3)	0.633 ± 0.004	-0.313 ± 0.002	-0.313 ± 0.002	0	$\Delta_z = -0.57$
	(0.626)	(-0.313)	(-0.313)		
Li(4)	0.512 ± 0.003	-0.252 ± 0.002	-0.252 ± 0.002	0	$\Delta_z = 0.22$
	(0.504)	(-0.252)	(-0.252)		
Li(5)-Li(10)	-0.179 ± 0.002	0.352 ± 0.002	-0.172 ± 0.002	0	$\Delta_x = 0.1$
	(-0.176)	(0.352)	(-0.176)		
Li(11)–Li(22)	-	0.195 ± 0.002	-0.133 ± 0.002	0.154 ± 0.006	$\Delta_x = 0.06$
	(-0.053)	(0.182)	(-0.129)	(0.153)	

Компоненты тензоров лигандного СТВ A_{ik} (в MHz) и абсолютные смещения ионов лития Δ (в Å)

Примечание. В скобках приведены расчетные дипольные значения с учетом искажений решетки.

Эффективные магнитные квантовые числа $S_{\perp}^{\bar{M}}$ и $S_{Z}^{\bar{M}}$ вычислялись по волновым функциям, полученным при диагонализации полного элекронного гамильтониана Gd³⁺ с параметрами, приведенными в работе [4]. Изменение $S_{\perp}^{\bar{M}}$ из-за угловой зависимости спектра ЭПР составляло при этом менее 0.01% и в расчетах не учитывалось.

Вычисленные компоненты тензоров лигандного СТВ для всех ближайших ядер лития приведены в таблице. Эти тензоры имеют дипольную форму и нулевые шпуры в пределах точности эксперимента. Поскольку ионы лития находятся в *S*-состоянии, предполагая вза-имодействие чисто дипольным, мы вычислили абсолютные смещения из положения равновесия ближайших ионов лития, которые приведены в таблице. Следует отметить, что спектры от ближайших вдоль оси с к Gd^{3+} ядер лития не были обнаружены, что означает наличие соответствующих вакансий, которые и осуществляют компенсацию избыточного заряда парамагнитного иона. Таким образом, модель парамагнитного центра редкоземельного иона Gd^{3+} полностью аналогична ранее исследованным ионам группы железа.

Для величины $\Delta \varphi$ получено значение $+38.8 \pm 1.6^{\circ}$. Обсудим вопросы локальных искажений решетки в рамках простейшей модели бильярдных шаров, основываясь на данных о кристаллической структуре [7]. Ионный радиус кислорода выберем 1.38 Å [8], поскольку эта величина следует из кристаллической структуры α-LiIO₃ в предпожении, что в комплексе IO₃⁻ ионы кислорода соприкасаются. Для Gd³⁺ и Li⁺ ионные радиусы равны 0.938 и 0.68 Å соответственно. Октаэдрические пустоты в кислородной решетке α -LiIO₃ способны вместить ионы с радиусом менее 0.74 Å, поэтому замещение лития (например, Li(0)) ионом Gd^{3+} должно вызывать расталкивание кислородных ионов. В работе [9] предполагается, что комплексы ІО₃⁻ поворачиваются как целое вокруг йода в вертикальной плоскости, проходящей через с, освобождая место для замещающего парамагнитного иона. Мы хотим обосновать другой механизм, согласно которому комплексы IO₃ поворачиваются вокруг йода на угол δ в плоскости, перпендикулярной с. Расчет показывает, что замещение Li(0) ионом Gd³⁺ вызывает поворот вокруг оси с шести ближайших групп IO₃, связанных с координационным кислородным октаэдром гадолиния, на угол $\delta = 13.3^{\circ}$ (по часовой стрелке, как показано на рис. 1), при этом кислородный октаэдр поворачивается как целое на угол -8.9° . Ось X' внутрикристаллического электрического поля в неискаженном кристалле составляет угол 45.6° по отношению к X. Таким образом, для Gd^{3+} : α -LiIO₃ получаем угол 36.7°, что очень близко к полученной нами величине 38.8°. Смещения ионов Li(3) и Li(4) также должны сопровождаться искажением кислородного окружения. В рамках предложенной модели смещению Li(3) на 0.57Å в сторону вакансии Li(1) соответствует поворот шести комплексов IO3 на угол -11.9° , а смещению Li(4) в сторону вакансии Li(2) на 0.22 Å — поворот на -7.4°.

Приближенность использованной модели не позволяет делать однозначные выводы о механизме искажений, однако близость вычисленного направления кристаллического поля к полученному из эксперимента представляется веским аргументом в пользу предложенного механизма искажений решетки.

Список литературы

- [1] А. Броер, Д.М. Дараселия. ФТТ 19, 8, 1250 (1977).
- [2] D.M. Daraselia, A. Brauer. Phys. Stat. Sol. (b) 109, 223 (1982).
- [3] D.M. Daraselia, D.L. Japaridze. Phys. Stat. Sol. (b) 119, K57 (1983).
- [4] D.L. Japaridze, S.V. Alchangyan, D.M. Daraselia, T.I. Sanadze. Phys. Stat. Sol. (b) 58, K195 (1990).
- [5] Д.Л. Джапаридзе, С.В. Алчянгян, Д.М. Дараселия, Т.И. Санадзе. ФТТ 31, 3, 268 (1989).
- [6] Т.И. Санадзе, Г.Р. Хуцишвили. В кн.: Проблемы магнитного резонанса. Наука, М. (1978). С. 206.
- [7] А. Эмирамиев, А.Г. Кочаров, И.И. Ямзин, В.А. Любимцев. Кристаллография 21, 2, 391 (1976).
- [8] R.D. Shanon, C.T. Previtt. Acta Cryst. B25, 925 (1969).
- [9] W. Karthe. Phys. Stat. Sol. (b) 81, 323 (1977).