Кинетические коэффициенты полупроводниковой фазы дисилицида железа при низких температурах

© М.И. Федоров, В.В. Попов, И.С. Еремин, В.К. Зайцев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: M.Fedorov@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 28 декабря 1999 г.)

Приведены результаты исследования кинетических коэффициентов β -FeSi₂ в области температур 4.2–300 К. Во всем изученном диапазоне температур удельное сопротивление уменьшается при увеличении температуры. На температурных зависимостях удельного сопротивления и теплопроводности наблюдается излом при ~ 20 К. Удельное сопротивление в области 4.2–20 К линейно зависит от температуры. Термоэдс быстро растет при уменьшении температуры и достигает значений, превышающих 15 mV/K. На температурной зависимости термоэдс наблюдается излом при ~ 40 К.

По-видимому, наблюдаемая совокупность температурных зависимостей кинетических коэффициентов не может быть объяснена суперпозицией только известных эффектов. Возможно, существует некоторый новый эффект, связанный с сильным электрон-фононным взаимодействием в дисилициде железа, который требует дальнейшего исследования.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 99-02-18035).

Материалы на основе низкотемпературной (полупроводниковой) фазы дисилицида железа β -FeSi₂ широко известны в качестве одних из самых дешевых термоэлектриков, что в значительной степени определило необходимость исследования их кинетических свойств. Эти исследования выявили необычный характер механизма проводимости β -FeSi₂. В частности, это проявляется в экспоненциальном росте термоэдс при повышении температуры в области температур 100–300 K [1]. На ряде образцов наблюдается небольшой рост термоэдс при понижении температуры до 77 К. Это в свою очередь вызывало интерес к исследованию кинетических коэффициентов β -FeSi₂ в области низких температур, вплоть до температуры жидкого гелия. Первые результаты были приведены нами в [2].

Приготовление образцов для исследования осуществлялось в три этапа. На первом этапе производилось прямое сплавление компонентов в тиглях из окиси алюминия в атмосфере аргона. На втором этапе методом вакуумного литья [3] изготавливались цилиндрические слитки металлической высокотемпературной α -фазы дисилицида железа. Третий этап, представляющий собой перевод материала в полупроводниковую β -фазу, заключался в длительном (~ 100 h) отжиге при температуре ~ 700 K.

Удельное сопротивление измерялось обычным двухзондовым методом с точностью около 5%. Термоэдс и теплопроводность измерялись в стационарном тепловом потоке с точностью 5–10%. Градиент температуры изменялся в зависимости от средней температуры образца и не превышал 10% от этой температуры.

На рис. 1 приведены температурные зависимости удельного сопротивления, термоэдс и теплопроводности образца дисилицида железа (кривая 2 на рис. 2). По данным рентгеновских исследований, этот образец пред-

ставляет собой хорошо сформированный однофазный поликристалл β -FeSi₂. На рис. 1, *а* обращают на себя внимание две особенности: быстрый рост термоэдс при понижении температуры ниже 40 К и излом на температурной зависимости удельного сопротивления при ~ 20 К. При этом термоэдс достигает очень высоких значений, характерных для эффекта увлечения носителей тока акустическими фононами. Но существенное увеличение удельного сопротивления (более чем на 4 порядка в области роста термоэдс) при понижении температуры от комнатной до температуры жидкого гелия не может быть связано с этим эффектом. Следует отметить, что излому температурной зависимости удельного сопротивления при ~ 20 К соответствует особенность температурной зависимости.

На рис. 1, b приведена температурная зависимость термоэдс этого же образца в двойном логарифмическом масштабе. В области температур 40–100 К рассматриваемая зависимость имеет хорошо выраженный линейный участок, который может быть описан выражением

$$\alpha = -32 + 1.5 \cdot 10^5 T^{-1.57},\tag{1}$$

где α — термоэдс, а T — температура. Низкотемпературный участок зависимости также является линейным, но с бо́льшим углом наклона к оси абсцисс. Температурная зависимость термоэдс на этом участке может быть выражена формулой

$$\alpha = 6.24 \cdot 10^8 T^{-3.89}. \tag{2}$$

Эта зависимость весьма близка к зависимости, характерной для эффекта увлечения носителей тока акустическими фононами: $\alpha \propto T^{-7/2}$ [4]. Очевидно, что эти зависимости не описывают эффект вымораживания носителей тока, которому соответствует экспоненциальный рост термоэдс при понижении температуры.

Рис. 1. a — термоэдс (α), удельное сопротивление (ρ) и теплопроводность (κ) поликристаллического β -FeSi₂ в области температур 4.2–300 К. b — характер температурной зависимости термоэдс (α) поликристаллического β -FeSi₂ в области температур 15–100 К. Здесь участок I описывается формулой (1), а участок 2 — формулой (2).

Рис. 2. Удельное сопротивление ряда образцов дисилицида железа (нумерация образцов соответствует таблице); *1*–4 — экспериментальные данные, сплошные линии — расчетные зависимости. На вставке — зависимость отношения параметров формулы (4) от *T_c*.

N₂	$a, \Omega \cdot \mathrm{cm} \cdot \mathrm{K}^{-1}$	$ ho_0, \Omega \cdot \mathrm{cm}$	$\lg(ho_1, \Omega \cdot \operatorname{cm} \cdot \operatorname{K}^{-b})$	b	T_c, \mathbf{K}	$-a/ ho_0,\mathrm{K}^{-1}$
1 2 3	$-128\ 000$ $-138\ 000$ -696 2540	2 300 000 2 980 000 10 500	8.44 8.40 5.83	-3.05 -3.13 -2.66	17.7 21.5 14.3	0.0556 0.0462 0.0659

Значения параметров формул (3), (4) и температуры T_c

На рис. 2 приведены температурные зависимости удельного сопротивления ряда образцов дисилицида железа, отличающихся неконтролируемым содержанием примеси. Зависимость удельного сопротивления (ρ) от температуры всех образцов в области 20–200 К хорошо описывается выражением

$$\rho = \rho_1 T^b. \tag{3}$$

При температурах 15–20 К на температурных зависимостях всех образцов наблюдается излом, соответствующий переходу от степенной зависимости $\rho(T)$ к линейной (рис. 2, 3). Зависимость удельного сопротивления от температуры всех образцов при низких температурах хорошо описывается линейной зависимостью (рис. 3) вида

$$\rho = \rho_0 + aT. \tag{4}$$

На рис. 2, *а* кривые, соответствующие зависимостям (3) и (4), нанесены сплошными линиями. Температура, соответствующая точке пересечения кривых вида (3) и (4), — T_c , а также значения параметров ρ_0 , ρ_1 , *a* и *b*, обеспечивающие наилучшее согласие расчета с экспериментом, приведены в таблице.

Рис. 3. Зависимость удельного сопротивления образцов *1* и *2* от температуры в линейном масштабе.

Как видно из рис. 2, абсолютные величины удельного сопротивления сильно меняются от образца к образцу, то тем не менее отношение параметра a к параметру ρ_0 слабо зависит от абсолютной величины удельного сопротивления (таблица) и проявляет линейную зависимость от T_c (рис. 2, b). Эта зависимость описывается выражением

$$a/\rho_0 = -0.105 + 2.737 \cdot 10^{-3} T_c, \tag{5}$$

т.е. можно с большой долей вероятности предположить, что на всех исследованных образцах наблюдается один и тот же эффект, который проявляется несколько различно в зависимости от действия неизвестного пока фактора.

Сравнить наши результаты по исследованию кинетических коэффициентов β-FeSi2 при низких температурах с литературными не представляется возможным, так как опубликованных данных по исследованию термоэдс и теплопроводности *β*-FeSi₂ при температурах ниже температуры жидкого азота нам не известно. Известна работа по исследованию удельного сопротивления монокристаллов *β*-FeSi₂ [5] в области низких температур вплоть до 1.4 К, но в этой работе исследовались легированные алюминием образцы, удельное сопротивление которых при 20 К почти в 4 раза меньше, чем самого низкоомного из исследованных нами образцов. В работе [6] приводятся данные по исследованию более высокоомного монокристалла β -FeSi₂, но, к сожалению, его удельное сопротивление измерено от 30 до 300 К. В области 30-60 К температурная зависимость удельного сопротивления этого образца практически совпадает с температурными зависимостями удельного сопротивления образцов 1 и 2.

В настоящее время мы не можем однозначно интерпретировать эффекты, наблюдаемые в β -FeSi₂ при низких температурах. По-видимому, наблюдаемая совокупность температурных зависимостей кинетических коэффициентов не может быть объяснена суперпозицией только известных эффектов. Возможно, существует некоторый новый эффект, связанный с сильным электрон-фононным взаимодействием в дисилициде железа, который требует дальнейшего исследования.

Авторы выражают искреннюю благодарность за проведение рентгеновских измерений М.П. Щеглову и Н.Ф. Картенко, а также П.П. Константинову, Е.П. Заяц и Г.Т. Алексеевой за проведение ряда измерений в области низких температур.

Список литературы

- M.I. Fedorov, Yu. V. Ivanov, M.V. Vedernikov, V.K. Zaitsev. Material Research Society Simposium Proceedings 545, 155 (1999).
- [2] М.И. Федоров, В.К. Зайцев, Ю.В. Иванов. В.В. Попов, А.Е. Калязин, М.А. Хазан. Сб. докладов V межгосударственного семинара. ФТИ, СПб (1997). С. 92.
- [3] M.I. Fedorov, A.E. Engalychev, V.K. Zaitsev, A.E. Kaliazin, F.Yu. Solomkin. Proceedings of XIII International Conference on Thermoelectrics. AIP Conference Proceedings (1995). Vol. 316. P. 324.
- [4] А.И. Ансельм. Введение в теорию полупроводников. ГИФМЛ, М.-Л. (1962). 420 с.
- [5] K.G. Lisunov, E.K. Arushanov, C. Kloc, U. Makang, E. Bucher. Phys. Stat. Sol. B195, 1, 227 (1996).
- [6] E. Arushanov, C. Kloc, E. Bucher. Phys. Rev. B50, 2653 (1994).