Диэлектрические и электромеханические свойства сегнетокерамики (1-*x*)PMN-*x*PZT

© А.И. Бурханов, А.В. Шильников, А.В. Сопит, А.Г. Лучанинов

Волгоградская государственная архитектурно-строительная академия, 400074 Волгоград, Россия

(Поступила в окончательном виде 21 октября 1999 г.)

Определялись диэлектрические и электромеханические характеристики сегнетокерамики (1-x)PMN-*x*PZT в зависимости от температуры, амплитуды и частоты измерительного, а также напряженности смещающего полей. Показано, что данный материал в одном температурном интервале в диапазоне низких и инфранизких частот имеет ярко выраженные релаксорные, а в другом — сегнетоэлектрические свойства. Установлены температурный и амплитуды интервалы, где ε' или только уменьшается с увеличением амплитуды измерительного поля (E_0) , или сначала увеличивается, а затем уменьшается при увеличении E_0 . По температурным зависимостям коэрцитивного поля $E_c(T)$, остаточной поляризации $P_f(T)$, реверсивным зависимостям ε^* и электромеханических характеристик определена область температур, разделяющих фазы, подобные суперпараэлектрической фазе, фазе дипольного стекла и сегнетоэлектрической фазе. Установлена концентрация РZT, при которой в системе PMN-PZT имеет место максимальная величина коэффициента электрострикции M_{11} . Показано, что в окрестности температур максимума ε' выполняется квадратичная зависимость деформации (S_3) по полю $(E_{=})$: $S_3 = M_{11}E^2$.

Работа выполнена при финансовой поддержке РФФИ (грант № 98-02-16146) и Конкурсного центра Минобразования (грант № 97-0-7.1-43).

Известно, что сегнетокерамика на основе магнониобата свинца (PMN) является одним из наиболее перспективных материалов для использования в качестве микропозиционеров, адаптивных зеркал, актюаторов и т.п. Наряду с возможностями технических применений данные материалы очень привлекательны и с точки зрения исследования фундаментальных проблем, так как являются удобными (модельными) объектами для изучения протекания различных неравновесных процессов в неупорядоченных системах. В частности, такие материалы относятся к классу так называемых релаксорных сегнетоэлектриков [1]. Однако, несмотря на огромный экспериментальный материал, полученный к настоящему времени для релаксоров, пока не существует однозначной интерпретации физики процессов, протекающих в этих материалах при различных условиях эксперимента. Так, определенный ряд свойств находит свое объяснение на основе модели суперпараэлектрика [1,2], когда предполагается существование в области температур $T \ge T_m$ (где Т_т — температура максимума диэлектрической проницаемости ε') термически активированных полярных нанообластей (ПНО), которые могут переключаться (переориентироваться) во внешнем поле (даже слабого сигнала) и тем самым вносить вклад в диэлектрический отклик системы. В то же время особенности поведения диэлектрических свойств в области температур T < T_m как при воздействии постоянного поля $E_{=}$ [3], так и без него (когда наблюдаются очень длительные процессы релаксации поляризации — старение [4] и различные эффекты памяти [5,6]) могут быть более адекватно описаны либо с точки зрения модели спинового или дипольного стекла [7], либо в рамках модели случайных полей [8] или же с позиций, развиваемых в ряде работ Исупова [9,10], где большая роль отводится влиянию

параэлектрических прослоек на временные зависимости различных процессов, происходящих при размытых фазовых переходах, в частности на возможность появления макродоменного состояния в релаксоре. В то же время в ряде последних работ Таганцева и Глазунова [11-13] вышеназванные подходы (например, для PMN) ставятся под сомнение. В частности, при описании свойств керамики и кристаллов PMN предложена модель, основным положением которой является утверждение о том, что вклад в ε' в области эргодической фазы связан с осцилляцией межфазных границ (МФГ) (необратимым, гистерезисным движением МФГ [14]); т.е. более вероятным с точки зрения авторов [11-13] является срыв (depining) фазовой границы, чем переориентация ПНО при воздействии переменного поля в области выше 200 К. При этом заметим, что существенных различий в понятиях переориентации ПНО и вибрации МФГ по сути дела не существует, если речь идет об активации электрическим полем [14]. Дело заключается в том, что "вибрация" МФГ может быть как обратимой (термически активируемой), так и необратимой (активируемой измерительным переменным полем [14]). Первый из этих случаев [11–13] фактически не рассматривается, хотя он по физической природе полностью аналогичен переориентации термически активируемых полярных нанообластей. Подчеркнем, что в недавней работе по исследованию PMN методом высоко разрешающей электронной микроскопии (ВРЭМ) [15] было убедительно доказано, что в "неэргодической фазе" для образования доменных границ в PMN не требуется внешнего воздействия, как это до сих пор считалось при обсуждении результатов исследования данного материала. Согласно [15], неиндуцированное (самопроизвольное) образование доменов происходит при очень низких температурах при охлаждении кристалла, когда наблюдается обратимый фазовый переход (ФП) из релаксорной фазы (в среднем кубической симметрии) в сегнетоэлектрическую (СЭ) ромбоэдрическую фазу. При этом в [15] показано, что в процессе охлаждения РМN при 200 К только начинается данный ФП, заканчивающийся при $T_{pht} = 135$ К. Поэтому $T_{pht} = 135$ К можно считать средней (наивероятнейшей) температурой структурного СЭ ФП, при которой большая часть фазы стала ромбоэдрической.

Следует заметить, что о таком неиндуцированном электрическим полем обратимом ФП было заявлено в более ранней работе [16] по комбинационному рассеянию, когда наблюдалось резкое изменение волнового числа и ширины полосы 227 ст⁻¹ изгибной моды в области T ~ 200 К. Еще раньше, в [17], было отмечено, что экстраполяция температур, индуцированных полем ФП, к нулевым значениям амплитуды поля дает в РМN величины $T_{pht} \approx 100-120$ K, хорошо согласующиеся с данными по ВРЭМ [15]. В то же время результаты работ Королевой и Вахрушева [18,19] не совпадают с данными [15-17] и не вполне согласуются с выводами [11-13]. Одновременно заметим, что подход, развиваемый в [11–13], был применен к релаксорам еще в [5,6] при интерпретации эффектов памяти в релаксорных керамиках PLZT и PMN, где использовалась модель пиннинга и депиннинга МФГ на подвижных точечных дефектах, а в [20] было подчеркнуто, что дисперсия ε^* в кристалле PMN в НЧ и ИНЧ диапазоне в различных температурных областях обусловлена вкладом в ε^* доменных границ (ДГ), МФГ и (или) ПНО-кластеров, т.е. рассматривался случай термически активируемого обратимого движения (осцилляция, "вибрация") ДГ и МФГ.

Анализ весьма значительного объема экспериментальных данных, накопленных к настоящему времени для различных релаксоров, и их достаточно противоречивая интерпретация, отмеченная выше, заставили нас провести комплексные исследования НЧ и ИНЧ диэлектрического отклика в широких интервалах температур, амплитуд измерительного, напряженностей смещающего полей, а также электромеханических параметров и пиротока [21] релаксорной керамической системы (1 - x)PMNx-PZT, близкой по свойствам к керамике PMN. Это сделано для того, чтобы еще раз попытаться разобраться в механизмах поляризации, переполяризации и электромеханического отклика типичных релаксоров.

1. Методика измерения и образцы

Диэлектрические параметры (действительная (ε') и мнимая (ε'') части диэлектрической проницаемости ε^*) на низких (10–10³ Hz) и инфранизких (0.1–10 Hz) частотах измерялись в динамическом режиме охлаждения со скоростью 1 K/min от 353 до 90 K как мостовым методом [22], так и в квазистатическом режиме с использованием модифицированной схемы Сойера–Тауэра, в которой применялся цифровой запоминающий осциллограф С9-8, сопряженный с компьютером.

В первом случае (в ультраслабых измерительных полях — $E_0 \cong 1 \,\mathrm{V/cm}$) определены начальные значения действительной и мнимой составляющих комплексной диэлектрической проницаемости ε_0^* (ε_0' и ε_0''), во втором (в средних и сильных полях E_0) — получены эффективные значения ε_{ef}' и ε_{ef}'' и определены вклады в них гистерезисного и релаксационного механизмов движения доменных и межфазных границ [14]. Кроме того, на основе обработки петель поляризации (ПП) определялись максимальная (P) и остаточная (P_r) поляризации и коэрцитивные поля (E_c) . Последние оценивались также по реверсивным диэлектрическим и реверсивным пьезоэлектрическим характеристикам, полученным методом резонанса и антирезонанса. При измерении индуцированной деформации S₃ сегнетокерамики применялась установка, основанная на использовании емкостного датчика [23]. Температуры, при которых проводились последние измерения, находились выше Т_m, в интервале от 298 до 318 К.

Образцы сегнетокерамики (1 - x)Pb[Mg_{1/3}Nb_{2/3}] O₃-*x*Pb[Zr_{0.53}Ti_{0.47}]O₃, где $0 \le x \le 0.3$, изготовлялись по обычной керамической технологии. Для диэлектрических измерений применялись образцы размером $S = 5 \times 5$ mm и толщиной от 0.2 до 0.5 mm, для измерений электромеханических параметров использовались диски с диаметром D = 10 mm и толщиной от 0.5 до 3 mm. Электроды наносились методом вжигания серебряной пасты.

2. Экспериментальные результаты и их обсуждение

2.1. Классификация фазового состояния материала. На рис. 1 представлены температурнополевые зависимости ε'_0 , $\varepsilon'_{ef}(T, E_0)$ и ε''_0 , $\varepsilon''_{ef}(T, E_0)$ керамики 0.89PMN-0.11PZT при частоте измерительного поля $\nu = 1$ Hz. Из рис. 1 хорошо видно, что увеличение амплитуды измерительного поля (E_0) приводит к тому, что максимальные значения $\varepsilon'_{ef}(T)$ и особенно $\varepsilon''_{ef}(T)$ сначала (с ростом E_0) возрастают, а затем уменьшаются, сдвигаясь в область более низких температур. Обращает на себя внимание и то, что при амплитудах измерительных полей $E_0 \ge 15 \, \text{kV/cm}$ в области 155 К появляются новые аномалии температурной зависимости $\varepsilon'_{ef}(T)$ в виде небольших дополнительных максимумов.

На рис. 2 представлены полевые зависимости температур максимумов эффективной диэлектрической проницаемости $\varepsilon'_{ef} - T'_m(E_0)$ и эффективных диэлектрических потерь $\varepsilon''_{ef} - T''_m(E_0)$ для двух частот измерительных полей: 10 и 1 Hz в сегнетокерамике 0.89PMN–0.11PZT. На врезке (рис. 2) приведена частотная зависимость температур максимума $-T'_m(\nu)$ диэлектрической проницаемости ε'_0 того же образца, измеренной в ультраслабых полях.

Рис. 1. Температурно-полевые зависимости $\varepsilon'_{ef}(T, E_0)$ и $\varepsilon''_{ef}(T, E_0)$ керамики 0.89РМN-0.11РZT, полученные на частоте $\nu = 1$ Hz при соответствующих амплитудах измерительного поля E_0 [kV/cm]: I = 0.001, 2 = 0.6, 3 = 1.8, 4 = 3, 5 = 5.4, 6 = 10.8, 7 = 16.2, 8 = 21.7.

Рис. 2. Полевая зависимость температур максимумов действительной $T'_m(E_0)$ (сплошная линия) и мнимой $T''_m(E_0)$ (штриховая линия) частей диэлектрической проницаемости на частоте 1 и 10 Нг. На врезке: частотная зависимость $T'_m([\ln(\nu/\nu_0)]^{-1})$, где $\nu_0 = 3 \cdot 10^{13}$ Нг [11] для ультраслабых измерительных полей $(E_0 = 0.001 \text{ kV/cm})$.

Как видно из рис. 2, существенное понижение температур (как T'_m , так и T''_m) наблюдается только при амплитуде измерительных полей, превышающей некоторое пороговое поле (в нашем случае $E_0 = E_{th} \sim 600-700 \, \text{V/cm}$).

Увеличение значений ε_{ef}' и ε_{ef}'' (рис. 1) при полях, меньших E_{th} , и сдвиг температуры максимума T'_m и T''_m в область низких температур с увеличением амплитуды поля в общем согласуется с данными для кристалла PMN, приведенными в [11–13]. В то же время имеются и некоторые отличия. Например, в [11] дана линейная зависимость $T'_{m}(E_0)$. В нашем случае, как видно из рис. 2, существуют два участка полей: на первом участке (при сравнительно малых допороговых E_0) наблюдается очень слабая зависимость T'_m от E_0 ; на втором участке (сравнительно сильные поля $E_0 > E_{th}$) зависимость $T'_m(E_0)$ достаточно хорошо аппроксимируется соотношением логарифмического типа $T_m \sim f(\lg(E_0))$. Кроме того, в [11] значение ε' в области температур $T \leq T_m$ всегда увеличивается с увеличением поля в отличие от наших результатов (рис. 3), из которых видно, что для температур $T \leq T_m$ рост $\varepsilon'_{ef}(E_0)$ и $\varepsilon''_{ef}(E_0)$ на частотах 0.1 - 10 Hz сменяется спадом (кривые 1, 2).

В то же время (рис. 3) для достаточно высокой температуры (кривые 3), когда $(T - T'_m) \approx 60$ K, существует участок, где величина ε'_{ef} не зависит от E_0 , и участок однозначного понижения ε'_{ef} с увеличением E_0 .

Таким образом, можно утверждать, что при T_i , лежащих выше T_m , т.е. там, где действительно отсутствует взаимодействие элементов, вносящих вклад в диэлектри-

Рис. 3. Амплитудные зависимости $\varepsilon'_{ef}(E_0)$ керамики 0.89PMN-0.11PZT на частотах 0.1, 1 и 10 Hz и температурах: 271 (1), 303 (2), 355 K (3).

Рис. 4. Реверсивная зависимость диэлектрической проницаемости $\varepsilon'(E_{=})$ (*a*) и петли поляризации $P(E_0)$ в слабых и сильных полях (*b*) для сегнетокерамики 0.89PMN-0.11PZT выше T'_m .

Рис. 5. Зависимость индуцированной деформации $S_3(E^2)$ для состава 0.89PMN-0.11PZT при температуре $T = 328 \text{ K} > T'_m$. На врезке показана концентрационная зависимость электрострикционной константы $M_{11}(x)$ состава (1 - x)PMN-xPZT при T = 298 K.

ческий отклик (эргодическая фаза), увеличение амплитуды измерительного поля приводит к уменьшению и действительной, и мнимой составляющих эффективной комплексной диэлектрической проницаемости. Иначе говоря, имеет место насыщение поляризации и допустимо предположение о суперпараэлектрическом поведении образца в переполяризующем поле. Этот вывод представляется особенно убедительным после анализа вида реверсивной зависимости $\varepsilon'_0(E_=)$, полученной при T = 326 K, когда $T > T_m$, а $\Delta T = T - T_m$ достаточно велико (рис. 4, *a*). Действительно, приведенная на рис. 4, *a* кривая (где $\varepsilon'_0(E_=) = b - dE_=^2$, а *b* и *d* — аппроксимационные константы при данной температуре) аналогична кривой диэлектрической нелинейности параэлектрической фазы сегнетоэлектрика, если (при T = const) ограничиться двумя членами быстро сходящегося ряда $\varepsilon(E)$ [24].

Тождественность данного фазового состояния суперпараэлектрическому подтверждается следующими фактами: а) существенной полевой зависимостью $\varepsilon'_0(E_=)$ (рис. 4, *a*); b) наличием при указанной температуре отличной от нуля спонтанной поляризации ($P_s \neq 0$) образца, фиксируемой по пиротоку [21]; c) видом петель поляризации в сильных полях (рис. 4, *b*); d) характером полевой зависимости индуцированной деформации $S_3(E^2)$ (рис. 5). На врезке показана концентрационная зависимость $M_{11}(x)$, имеющая максимум при x = 0.11, что и обусловило детальное изучение материала с данной концентрацией. По-видимому, с достаточной достоверностью можно полагать, что такое полярное состояние образца обусловлено наличием в его объеме ПНО полярных кластеров [19].

Анализ зависимости $P_r(T)$, приведенной на рис. 6, позволяет условно разделить исследованную область температур на три участка. На первом, лежащем в интервале температур от ~ 350 до ~ 285 K, темп роста величины остаточной поляризации $(-dP_r/dT)$ при понижении температуры сравнительно невелик. На втором, находящемся в интервале от ~ 285 до ~ 230 K, абсолютная величина $|dP_r/dT|$ гораздо больше, чем на первом. И наконец, на третьем, простирающемся от ~ 230 до ~ 150 K $|dP_r/dT|$ несколько меньше, чем на первом участке.

Таким образом, с учетом указанного ранее, можно считать, что в интервале температур от ~ 285 К и выше существует суперпараэлектрическая фаза, являющаяся эргодической.

Рис. 6. Температурная зависимость остаточной поляризации $P_r(T)$ для амплитуды измерительного поля $E_0 \approx 21.7 \, \text{kV/cm}$.

Рис. 7. Петли поляризации $P(E_0)$ в сегнетокерамике 0.89PMN-0.11PZT на частотах 0.1, 1 и 10 Hz при температуре T = 283 K.

Рис. 8. Эволюция петель поляризации на частотах 0.1, 1 и 10 Hz для температур 187 и 218 K в керамике 0.89PMN-0.11PZT при различных амплитудах *E*₀.

Рис. 9. Реверсивные зависимости диэлектрической проницаемости $\varepsilon'(E_{=})$ (*a*) и податливости $s_{11}^{*E}(E_{=})$ (*b*) при температурах 220, 173, 143, 123 К в керамике 0.89PMN-0.11PZT и температурная зависимость пьезоэлектрического коэффициента $g_{31}(T)$ (*c*), полученная при различных величинах смещающих полей [kV/cm]: 1 - 17.84, 2 - 5.88, 3 - 1.98, 4 - 0 в керамике 0.89PMN-0.11PZT.

В пользу того, что на втором участке существует фаза, подобная фазе дипольного стекла, указывает, в частности, практически совпадение с $T_f \approx 285$ К, рассчитанной по формуле Фогеля-Фулчера температуры "стекольного" ФП, а ПП, полученные в весьма слабых полях, на частоте 10 Hz при температуре, близкой к T_f , представляют собой концентрические эллипсы (рис. 7), свидетельствующие о наличии процесса инфранизкочастотной релаксации поляризации. На этом же участке температур наблюдается минимальная инфранизкочастотная дисперсия ε_{ef}^* в сравнительно слабых полях, что также характерно для дипольного стекла.

Третий участок $P_r(T)$, выделенный на рис. 6, соответствует полярной фазе. Об этом свидетельствует и типичный для СЭ вид семейства ПП (рис. 8), и характер реверсивных зависимостей как $\varepsilon'_0(E_{=})$, так и $s_{11}^{*E}(E_{=})$ (рис. 9, *a*, *b*), и поведение температурной зависимости пьезоэлектрической константы $g_{31}(T) \sim P_s(T)$, дающей экстраполяционную температуру ФП $T \approx 230$ К (рис. 9, *c*).

Следует заметить, что внутри полярной фазы имеется еще один сегнетоэлектрический ФП вблизи $T \approx 113$ K, регистрируемый по максимуму $\varepsilon'_0(T)$ [25] и поведению P_r (рис. 6). Заметим, что в сильных полях он наблюдается при $T \approx 123$ K (рис. 1, *a*) и несколько выше для пьезоэлектрической константы (рис. 9, *c*). Однако структурные исследования нами не проводились.

2.2. О механизмах поляризации и переполяризации. Анализ ПП (рис. 4, b, 7, 8), кривых реверсивных зависимостей $\varepsilon'_0(E_{=})$ (рис. 9, a), $s_{11}^{*E}(E_{=})$ (рис. 9, b) и пьезоэлектрических характеристик $[d_{31}(E_{=}), g_{31}(E_{=}), k_p(E_{=})]$ свидетельствует, что на всех трех участках, выделенных нами в исследованном температурном интервале (рис. 6), имеют место существенные вклады различных механизмов движения МФГ и ДГ в соответствующие диэлектрические и электромеханические характеристики материала.

Так, на первом температурном участке в сравнительно слабых полях наблюдаются вклады обратимого упругого и обратимого релаксационного механизмов движения МФГ в ε_0^* и ε_{ef}^* , а также в пьезоэлектрические характеристики ($d_{31}, g_{31}, k_p, s_{11}^{*E}$). В сравнительно сильных полях, в которых происходит срыв МФГ, вклад вносит необратимое гистерезисное (скачкообразное) движение МФГ. Поэтому справедливость утверждения авторов [11–13] может быть отнесена только к этому (последнему) случаю.

На втором температурном участке в отличие от первого отсутствует обратимое упругое движение МФГ и существует (наряду со всеми остальными) необратимое релаксационное движение МФГ.

Механизмы движения ДГ при процессах поляризации и переполяризации в сегнетоэлектрической фазе принципиально не отличаются от рассматриваемых ранее для сегнетоэлектриков [26,27].

Таким образом, в работе получены следующие результаты.

1) Проведена классификация фазовых переходов в сегнетокерамике (1 - x)PMN-xPZT. Показано, что данная система претерпевает по крайней мере три фазовых перехода: из суперпараэлектрической фазы — в фазу, подобную дипольному стеклу; из стеклоподобной фазы — в "первую" сегнетоэлектрическую фазу; из "первой" сегнетоэлектрической во "вторую" сегнетоэлектрическую фазу.

 Установлено, что вклад в диэлектрические и пьезоэлектрические свойства вносят различные механизмы движения межфазных и доменных границ.

Список литературы

- [1] L.E. Cross. Ferroelectrics 76, 241 (1987).
- [2] G.A. Rossetti, T. Nishimura, L.E. Cross. J. Appl. Phys. 70, 3, 1630 (1991).
- [3] Z.-G. Ye, H. Schmid. Ferroelectrics 145, 83 (1993).
- [4] W. Pan, F. Furmann, G.O. Daytan, L.E. Cross. J. Matter. Sci. Lett. 5, 647 (1986).

- [5] А.В. Шильников, А.И. Бурханов, Е.Х. Биркс. ФТТ 29, 3, 809 (1987).
- [6] A.V. Shil'nikov, A.I. Burkhanov, E.H. Birks, A. Sternberg. Ferroelectrics 81, 317 (1988).
- [7] D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig. Phys. Rev. B46, 13, 8003 (1992).
- [8] M.D. Glinchuk, R. Farhi, V.A. Stephanovich. Ferroelectrics 199, 11 (1997).
- [9] В.А. Исупов. ФТТ **38**, *5*, 1326 (1996).
- [10] V.A. Isupov. Phys. Stat. Sol. (b) 213, 211 (1999).
- [11] A.E. Glazounov, A.K. Tagantsev, A.J. Bell. Phys. Rev. B53, 17, 11 281 (1996).
- [12] A.K. Tagantsev, A.E. Glazounov. Phys. Rev. B57, 1, 18 (1997).
- [13] A.K. Tagantsev, A.E. Glazounov. J. Korean Phys. Soc. 32, S951 (1998).
- [14] А.В. Шильников, Н.М. Галиярова, С.В. Горин, Д.Г. Васильев, Л.Х. Вологирова. Изв. АН СССР. Сер. физ. 55, 3, 578 (1991).
- [15] M. Yoshida, S. Mori, N. Yanamoto, Y. Uesu, J.M. Kiat. J. Korean Phys. Soc. 32, S993 (1998).
- [16] I. Heike, W. William. J. Appl. Phys. 76, 3, 1789 (1994).
- [17] Л.А. Кузнецова, Л.С. Камзина, Н.Н. Крайник. Сб. научных статей АН СССР. ФТИ, Л. (1981). С. 103.
- [18] Е.Ю. Королева. Автореф. дисс. к. ф-м.н. ФТИ, СПб (1998).
 20 с.
- [19] С.Б. Вахрушев. Дисс. д. ф-м.н. ФТИ, СПб (1998). 86 с.
- [20] Е.Г. Надолинская, Н.Н. Крайник, А.В. Шильников, Г.А. Смоленский, Л.Х. Вологирова. ФТТ 30, 149 (1988).
- [21] A.V. Shil'nikov, A.V. Sopit, A.I. Burkhanov, A. Luchaninov. J. European. Cer. Soc. 19, 1295 (1999).
- [22] AS TM-D 150–70. Методы определения диэлектрической проницаемости и диэлектрических потерь твердых электроизолированных материалов при переменном токе. Сб. стандартов США. М. (1979). С. 108.
- [23] А.Г. Лучанинов, А.В. Владимцев, Б.Н. Черных, А.А. Шевченко, А.В. Шильников, Л.А. Шувалов. ПТЭ 1, 213 (1990).
- [24] Ю.М. Поплавко. Физика диэлектриков. Вища шк., Киев (1980). 398 с.
- [25] А.В. Сопит, А.И. Бурханов, А.В. Шильников, А.Г. Лучанинов. Сб. тез. Межд. конференции "Фазовые переходы и критические явления в конденсированных средах". Ин-т физики Дагестанского научного центра РАН, Махачкала (1999). С. 251.
- [26] А.В. Шильников. Изв. РАН. Сер. физ. 51, 10, 1726 (1987).
- [27] A.V. Shil'nikov, V.N. Nesterov, A.I. Burkhanov. Ferroelectrics 175, 14 (1995).