Определение релаксационных констант многоуровневой квадрупольной спин-системы

© И.В. Золотарев, А.С. Ким, П.Г. Нейфельд*

Пермский государственный университет, 614600 Пермь, Россия *Пермское отделение РНЦ "Прикладная химия", Пермь, Россия E-mail: zolot@psu.ru

(Поступила в Редакцию 26 июля 1999 г.)

Методом двухчастотного ядерного квадрупольного резонанса определены времена релаксации всех одноквантовых переходов многоуровневой квадрупольной спин-системы по данным одного перехода, что невозможно сделать одночастотным способом. При этом точность определения равна точности измерения времен релаксации при одночастотном возбуждении перехода, который был взят за "базовый". Приведены данные измерения и определения релаксационных констант двухчастотным методом ЯКР в KReO₄, NaReO₄, а также в SbCl₃, SbBr₃ и в их комплексах при разных температурах.

Работа выполнена при поддержке РФФИ (грант "Ведущие научные школы" № 96-15-96-636).

Изучение релаксационных процессов в многоуровневой квадрупольной спин-системе одночастотным методом ЯКР предполагает раздельное возбуждение каждого из переходов и определение релаксационных констант, что является трудной задачей в техническом и математическом смысле, поскольку требует регистрации и анализа всех кривых, описываемых многоэкспоненциальными функциями.

В данной работе рассмотрена возможность определения релаксационных констант всех одноквантовых переходов многоуровневой спин-системы при двухчастотном воздействии.

При одночастотном раздельном возбуждении раздельно каждого из переходов многоуровневой спин-системы времена $T_{2\rho(one)}$ поперечной релаксации во вращающейся системе координат (ВСК) определяются аналогично [1]

$$T_{2\rho(one)}^{(i)} = \frac{2T_2^{(i)}T_1^{(i)}}{T_2^{(i)} + T_1^{(i)}},\tag{1}$$

где $i = a, b, \ldots$ — номер возбуждаемого перехода, а $T_2^{(i)}, T_1^{(i)}$ — времена поперечной и продольной релаксаций этого перехода.

При двухчастотном воздействии (см. рисунок) на два соседних перехода многоуровневой спин-системы огибающая сигнала эха, полученная при изменении временного интервала τ_2 , спадает с постоянной времени $T_{2\rho(two)}^{(i)}$ поперечной релаксации в ВСК.

Рассмотрим два случая. 1) Импульс накачки подается на нижнем переходе, а наблюдение за амплитудой сигнала эха ведется на верхнем переходе (см. рисунок, *a*). 2) Импульс накачки подается на верхнем переходе, а наблюдение за амплитудой сигнала эха ведется на нижнем переходе (см. рисунок, *b*). Величина длительности t_w импульса накачки связана с насыщением перехода и расстройкой, которые необходимы для наблюдения сигнала эха в ВСК при двухчастотном воздействии на многоуровневую спинсистему. При этом $H_1 \cdot t_w$ является величиной постоянной и имеет определенное значение для каждого перехода конкретной многоуровневой спин-системы.

Время поперечной релаксации в ВСК на верхнем пределе при двухчастотном воздействии (по программе

Импульсная программа двухчастотного воздействия на многоуровневую спин-систему: *a* — импульс накачки на нижнем переходе, наблюдение сигнала эха на верхнем переходе; *b* — импульс накачки на верхнем переходе, наблюдение сигнала эха на нижнем переходе.

Изотоп	Переход	Частота, MHz	Температура, К	$T_{2 ho(two)}, \mu s$	$T_{2 ho(one)}, \mu s$	$T_{2(one)}, \mu s$	$T_{1(one)}, \mu s$
¹⁸⁵ Re	$\frac{1/2-3/2}{3/2-5/2}$	28.312 56.600	296 296	144 104	105 143	66 100	260 250
¹⁸⁵ Re	$\frac{1/2-3/2}{3/2-5/2}$	29.386 58.746	77 77	1063 380	378 1080	200 630	3400 3800
¹⁸⁷ Re	$\frac{1/2-3/2}{3/2-5/2}$	26.825 53.626	296 296	185 115	115 184	70 130	320 315
¹⁸⁷ Re	$\frac{1/2-3/2}{3/2-5/2}$	27.839 55.651	77 77	715 215	215 722	110 390	4300 4900

Таблица 1. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер ^{185,187} Re в KReO₄

Таблица 2. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер ^{185,187} Re в NaReO₄

Изотоп	Переход	Частота, MHz	Температура, К	$T_{2 ho(two)}, \mu s$	$T_{2 ho(one)}, \mu { m s}$	$T_{2(one)}, \mu s$	$T_{1(one)}, \mu s$
¹⁸⁵ Re	$\frac{1/2-3/2}{3/2-5/2}$	44.997 89.949	296 296	99 77	78 96	50 68	180 168
¹⁸⁵ Re	$\frac{1/2-3/2}{3/2-5/2}$	48.628 97.207	77 77	562 175	175 568	90 310	3000 3400
¹⁸⁷ Re	$\frac{1/2-3/2}{3/2-5/2}$	42.600 85.167	296 296	100 73	72 104	45 70	180 200
¹⁸⁷ Re	$\frac{1/2-3/2}{3/2-5/2}$	46.024 92.010	77 77	648 318	323 630	170 360	3300 2500

Таблица 3. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер ^{121,123}Sb в SbCl₃

Изотоп	Переход	Частота, MHz	Температура, К	$T_{2 ho(two)}, \mu s$	$T_{2 ho(one)}, \mu { m s}$	$T_{2(one)}, \mu s$	$T_{1(one)}, \mu { m s}$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	58.162 112.60	294 294	725 437	441 716	270 520	1.2 1.15
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	59.730 114.34	77 77	1633 856	861 1614	440 850	21.0 16.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	37.415 67.776	294 294	576 373	376 569	220 370	1.30 1.23
¹²³ Sb	3/2-5/2 5/2-7/2	67.776 102.78	294 294	806 573	569 815	370 600	1.23 1.27
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	39.093 68.640	77 77	2189 1328	1341 2155	700 1175	16.0 13.0
¹²³ Sb	3/2-5/2 5/2-7/2	68.640 104.46	77 77	3315 2140	2155 3280	1175 1900	13.0 12.0

см. рисунок, a) равно

$$T_{2\rho(two)}^{(b)} = \frac{2T_2^{(a)}T_1^{(b)}}{T_2^{(a)} + T_1^{(b)}},$$
(2)

а на нижнем переходе (по программе см. рисунок, b) —

$$T_{2\rho(two)}^{(a)} = \frac{2T_2^{(b)}T_1^{(a)}}{T_2^{(b)} + T_1^{(a)}}.$$
(3)

При этом для времен поперечной релаксации в ВСК в условиях одно-двухчастотного воздействий на многоуровневую спин-систему выполняются условия

$$T_{2\rho(one)}^{(a)} = T_{2\rho(two)}^{(b)},$$

$$T_{2\rho(one)}^{(b)} = T_{2\rho(two)}^{(a)}.$$
 (4)

Таблица 4. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер ^{121,123}Sb в SbBr₃-α при температуре 77 К

Изотоп	Переход	Частота, MHz	$\begin{array}{c} T_{2\rho(two)},\\ \mu \mathbf{s} \end{array}$	$T_{2 ho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},$ μ s
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	50.263 99.416	850 316	318 849	160 440	24.7 12.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	31.200 60.143	1165 421	416 1070	220 600	20.0 5.0
¹²³ Sb	3/2-5/2 5/2-7/2	60.143 90.583	1438 1043	1070 1388	600 840	5.0 4.0

Таблица 5. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер ^{121,123}Sb в SbBr₃-*β* при температуре 77 К

Изотоп	Переход	Частота, MHz	$T_{2\rho(two)},\ \mu s$	$T_{2\rho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},\ \mu \mathbf{s}$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	49.302 94.944	690 661	671 680	340 350	25.0 12.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-/2}$	31.989 57.085	899 646	649 894	330 460	20.0 16.0
¹²³ Sb	3/2-5/2 5/2-7/2	57.085 86.723	1196 880	894 1096	460 580	16.0 10.0

Таблица 6. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер 121,123 Sb в 2SbCl₃ \cdot C₆H₆ при температуре 77 K

Изотоп	Переход	Частота, MHz	$\begin{array}{c} T_{2\rho(two)},\\ \mu \mathbf{s} \end{array}$	$T_{2\rho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},\ \mu s$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	59.604 117.60	710 411	417 695	210 360	26.0 10.0
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	60.008 116.24	635 413	418 633	210 320	37.0 12.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	37.113 71.122	1712 358	358 1163	180 880	31.0 15.0
¹²³ Sb	3/2-5/2 5/2-7/2	71.122 107.20	2393 1570	1163 2206	880 1300	15.0 7.3
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	38.563 69.980	1222 299	299 1215	150 620	43.0 30.0
¹²³ Sb	3/2-5/2 5/2-7/2	69.980 106.11	1746 1139	1215 1595	620 900	30.0 7.0

Таблица 7. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер 121,123 Sb в 2SbCl₃ \cdot C₁₀H₈ при температуре 77 K

Изотоп	Переход	Частота, MHz	$T_{2\rho(two)},\ \mu s$	$T_{2\rho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},\ \mu \mathbf{s}$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	59.460 118.94	1558 350	358 1412	180 800	30.0 6.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	36.099 72.176	3897 689	691 3834	350 2100	27.0 22.0
¹²³ Sb	$_{5/2-7/2}^{3/2-5/2}$	72.176 108.26	3174 3498	3834 2940	2100 1900	22.0 6.5

Таблица 8. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер 121,123 Sb в 2SbBr₃ · C₆H₆ при температуре 77 K

Изотоп	Переход	Частота, MHz	$\begin{array}{c} T_{2\rho(two)},\\ \mu \mathbf{s} \end{array}$	$T_{2\rho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},\ \mu s$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	50.730 96.441	594 315	318 581	160 300	30.0 9.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	33.562 57.810	710 454	456 705	230 360	26.0 17.0
¹²³ Sb	3/2-5/2 5/2-7/2	57.810 86.162	1084 703	705 1080	360 560	17.0 15.0

Таблица 9. Данные измерений и определения релаксационных констант при двухчастотном методе ЯКР спин-эха ядер 121,123 Sb в 2SbBr₃ · C₁₀H₈ при температуре 77 K

Изотоп	Переход	Частота, MHz	$T_{2\rho(two)},\ \mu s$	$T_{2\rho(one)},\ \mu s$	$T_{2(one)},\ \mu s$	$T_{1(one)},\ \mu s$
¹²¹ Sb	$\frac{1/2-3/2}{3/2-5/2}$	50.316 100.45	877 316	317 872	160 450	17.0 14.0
¹²³ Sb	$\frac{1/2-3/2}{3/2-5/2}$	30.650 60.945	1548 451	456 1500	230 800	24.0 12.0
¹²³ Sb	3/2-5/2 5/2-7/2	60.945 91.478	1441 1500	1500 1411	800 800	12.0 6.0

Отсюда с учетом выражений (1), (2) и (4) получаем

$$T_{2}^{(a)} = \frac{T_{2\rho(two)}^{(b)} T_{1}^{(a)}}{2T_{1}^{(b)} - T_{2\rho(two)}^{(b)}},$$

$$T_{1}^{(a)} = \frac{T_{2\rho(two)}^{(b)} T_{2}^{(a)}}{2T_{2}^{(a)} - T_{2\rho(two)}^{(b)}},$$
(5)

а с учетом выражений (1), (3) и (4) —

$$T_{2}^{(b)} = \frac{T_{2\rho(two)}^{(a)}T_{1}^{(a)}}{2T_{1}^{(a)} - T_{2\rho(two)}^{(a)}},$$

$$T_{1}^{(b)} = \frac{T_{2\rho(two)}^{(a)}T_{2}^{(b)}}{2T_{2}^{(b)} - T_{2\rho(two)}^{(a)}}.$$
 (6)

Времена поперечной релаксации во вращающейся системе координат при одночастотном возбуждении $T_{2\rho(one)}^{(a)}$, $T_{2\rho(one)}^{(b)}$ определяются по известным данным согласно формуле (1), при двухчастотном возбуждении $T_{2\rho(two)}^{(a)}$, $T_{2\rho(two)}^{(b)}$ измеряются экспериментально.

В табл. 1-9 приведены данные измерения и определения релаксационных констант двухчастотным методом ЯКР в KReO₄, NaReO₄, а также в SbCl₃, SbBr₃ и в их комплексах при разных температурах.

Рассмотрим подробнее пример на одном из образцов. Предположим, что не наблюдается сигнал эха при одночастотном воздействии на переходе 1/2-3/2 в KReO₄ (резонанс ¹⁸⁵Re, $\nu_1 = 28.312$ MHz, J = 5/2, T = 296 K). Необходимо определить время поперечной релаксации $T_2^{(1)}$, время продольной релаксации $T_1^{(1)}$ и время поперечной релаксации в ВСК $T_{2\rho(one)}^{(1)}$ этого перехода по данным перехода 3/2-5/2 (резонанс¹⁸⁵Re, $\nu_2 = 56.600$ MHz).

Используя (2), (4), (5), находим: $T_2^{(1)} = 65, T_1^{(1)} = 251$ и $T_{2\rho(one)}^{(1)} = 105 \,\mu$ s.

Теперь предположим, что не наблюдается эха при одночастотном воздействии на переходе 3/2-5/2 (резонанс ¹⁸⁵Re, $\nu_2 = 56.600 \text{ MHz}$). В этом случае необходимо определить $T_2^{(2)}$, $T_1^{(2)}$ и $T_{2\rho(one)}^{(2)}$ этого перехода по данным перехода 1/2-3/2 (резонанс ¹⁸⁵Re, $\nu_1 = 28.312 \text{ MHz}$).

Используя (3), (4) и (6), находим $T_2^{(2)} = 100$, $T_1^{(2)} = 250$ и $T_{2\rho(one)}^{(2)} = 143 \,\mu$ s.

Таким образом, формирование квадрупольного спинового эха во вращающейся системе координат при двухчастотном воздействии на два соседних перехода позволяет определять времена релаксации всех одноквантовых переходов многоуровневой спин-системы. При этом по данным одного перехода можно определить релаксационные параметры всех остальных одноквантовых переходов. Точность их определения зависит от точности измерения времен релаксации перехода, взятого за "базовый".

Список литературы

[1] Т. Фаррар, Э. Беккер. Импульсная и Фурье-спектроскопия ЯМР. Мир, М. (1973). 164 с.

640