Диэлектрические свойства молекулярных комплексов С₆₀

© А.А. Пронин, С.В. Демишев, Н.Е. Случанко, Н.А. Самарин, Д.В. Конарев*, Р.Н. Любовская*

Институт общей физики Российской академии наук,

117942 Москва, Россия

*Институт проблем химической физики Российской академии наук,

142432 Черноголовка, Московская обл., Россия

E-mail: demis@lt.gpi.ru

(Поступила в Редакцию 9 июля 1999 г.)

Выполнено исследование диэлектрической проницаемости ε на частоте 100 MHz молекулярных комплексов (BTX) $C_{60}CS_2$, (DAN) C_{60} (C_6H_6)₃, (S_4N_4)_{1,2} $C_{60}(C_6H_6)_{0.8}$. Обнаружено возникновение максимума на температурной зависимости $\varepsilon(T)$ при $T \approx 90$ K, который можно связать с "замерзанием" ориентационного беспорядка. Найдено, что при низких температурнах $T \leq 25$ K наблюдается участок аномального роста ε при понижении температуры, причем низкотемпературная особенность, по-видимому, чувствительна к характеру упаковки "шаров" C_{60} в молекулярном комплексе.

Работа выполнена в рамках программы "Фуллерены и атомные кластеры" Миннауки РФ при дополнительной поддержке грантами РФФИ № 98-02-17163, INTAS N 96-0451, ERB IC 15СТ980812 и грантом Президента РФ № 96-15-96929.

1. Хорошо известно [1], что кристаллы фуллерена C_{60} имеют несколько структурных модификаций. При высоких температурах $T > T_I \approx 260$ К устойчива ориентационно-разупорядоченная ГЦК фаза, а понижение температуры ниже T_I индуцирует переход в фазу с простой кубической решеткой. Этот переход сопровождается сильным подавлением ориентационного беспорядка: при $T < T_I$ "выживают" две преимущественные ориентации молекул C_{60} . Дальнейшее уменьшение температуры до $T_{II} \approx 90$ К приводит к переходу кристалла фуллерена в особое стеклообразное состояние, в котором ориентационный беспорядок "замерзает", и в результате около 17% молекул C_{60} оказываются в энергетически менее выгодной конфигурации [1].

Фазовые переходы при $T = T_I$ и T_{II} сопровождаются резким изменением времени релаксации [2-4], которое определяет различные физические свойства фуллеренов, в том числе низкочастотную диэлектрическую проницаемость. Однако имеющиеся в литературе сведения о температурной и частотной зависимостях диэлектрической проницаемости $\varepsilon(\omega, T)$ носят противоречивый характер [1-3,5]. Например, отсутствует согласие как относительно абсолютной величины ε , так и относительно механизма дипольной релаксации. Дискуссионным является вопрос о влиянии примеси кислорода на диэлектрические свойства С₆₀. В ряде работ [1,2,5] утверждается, что примесь кислорода вносит доминирующий вклад и полностью определяет особенности $\varepsilon(\omega, T)$, в то время как другие исследования показывают, что диэлектрические характеристики фуллеренов относятся к внутренним свойствам и слабо зависят от примесей [3]. С экспериментальной точки зрения проблема усугубляется сильной чувствительностью пленок С₆₀ к условиям приготовления и отжига [1-3,5].

Для выяснения физических механизмов, определяющих диэлектрическую релаксацию фуллеренов и материалов на их основе, перспективными могут оказаться молекулярные комплексы фуллерен-органическое донорное соединение [6-10]. Соединения этого типа обладают разнообразными типами структур — это могут быть цепочечные, слоистые структуры или структуры с трехмерным расположением молекул С₆₀. Для них характерны небольшие величины переноса заряда между донорной молекулой и молекулой С₆₀ (в основном такие комплексы образуются за счет ван-дер-ваальсовских поляризационных сил [7]). Кроме того, согласно существующим представлениям, высокотемпературное вращение молекул С₆₀ в молекулярных комплексах оказывается замороженным [6,8,9]. Существенно, что монокристаллы молекулярных комплексов на основе С₆₀ могут иметь относительно большие размеры, что позволяет выполнить диэлектрические измерения на индивидуальных кристаллах, а не на поликристаллических пленках (как в случае чистого С₆₀).

Таким образом, изучение молекулярных комплексов на основе C_{60} представляет интерес с точки зрения ключевых аспектов проблемы диэлектрических свойств, включающих ориентационные переходы, влияние кристаллической структуры и неконтролируемые примеси.

2. Для исследования диэлектрических свойств были выбраны монокристаллы комплексов (BTX)C₆₀CS₂, (DAN)C₆₀(C₆H₆)₃ и (S₄N₄)_{1.2}C₆₀(C₆H₆)_{0.8} (где ВТХ — 9,9'-транс-бис(теллураксантенил), DAN-диантрацен). Комплексы (S₄N₄)_{1,2}C₆₀(C₆H₆)_{0.8} и (DAN)C₆₀(C₆H₆)₃ обладают слоистой структурой, в которой плотноупакованные слои из молекул С₆₀ чередуются со слоями из молекул донора и растворителя [8,9]. Для комплекса (BTX)C₆₀CS₂ характеры цепочки из молекул C₆₀ с расстояниями между центрами ≈ 10.31 Å, что больше ван-дер-ваальсова диаметра молекулы $C_{60} \approx 10.18$ Å. Таким образом, молекулы C_{60} в этом комплексе практически не взаимодействуют друг с другом. Методики синтеза молекулярных комплексов фуллеренов описаны в [8,9].

Температурная зависимость диэлектрической проницаемости на частоте 100 MHz для различных молекулярных комплексов на основе C₆₀. $I - (S_4H_4)_{1,2}C_{60}(C_6H_6)_{0.8}$, $2 - (DAN)C_{60}(C_6H_6)_3$, $3 - чистый C_{60}$, $4 - (BTX)C_{60}CS_2$. Штриховыми линиями обозначены характерные температуры T_I , T_{II} и T_{III} (см. текст).

Для сравнения были выполнены измерения диэлектрических свойств образцов чистого C_{60} полученных прессованием из порошка фуллерена (аналогичные образцы были исследованы в работе [3]). Характерные размеры образцов C_{60} и молекулярных комплексов на основе C_{60} составили $2 \times 1 \times 0.5$ mm.

Известные из литературы измерения низкочастотной диэлектрической проницаемости C₆₀ были выполнены в диапазоне частот $\omega/2\pi < 1$ MHz [1–4], что для $T < T_I$ соответствует случаю $\omega \tau \ll 1$ (здесь τ — характерное время ориентационных переходов, в общем случае отличное от характерного времени дипольной релаксации [3,4]). Очевидно, представляет интерес исследовать противоположный случай $\omega \tau \ge 1$, для которого можно ожидать более яркого проявления эффектов, связанных с ориентационным беспорядком. Поскольку в области перехода беспорядок-порядок $T \approx T_I$ величина τ составляет $\tau \approx 2 \cdot 10^{-9}$ s [4], то условию $\omega \tau \approx 1$ соответствует частота $\omega/2\pi \approx 100$ MHz. Измерения диэлектрической проницаемости на частоте $\omega/2\pi = 100 \,\text{MHz}$ в диапазоне температур 4.2-300 К были выполнены с помощью установки на базе измерителя импеданса НР4191А, описанной в [11].

3. Температурная зависимость диэлектрической проницаемости для различных молекулярных комплексов и чистого C₆₀ показана на рисунке. Обращает на себя внимание, что температурные зависимости $\varepsilon(T)$ носят сложный немонотонный характер: относительно слабое изменение $\varepsilon(T)$ при понижении температуры до $T \approx 190 \,\mathrm{K}$ сменяется более выраженным уменьшением диэлектрической проницаемости, и при $T \approx 120 - 150 \, {
m K}$ кривые $\varepsilon(T)$ проходят через минимум. Отметим, что для образца чистого C₆₀ на кривой $\varepsilon(T)$ наблюдается излом при $T \approx T_I = 260 \, \text{K}$. Дальнейшее понижение температуры сопровождается ростом $\varepsilon(T)$ для всех исследованных образцов, и при $T \approx T_{II} = 90 \, \text{K}$ на температурной зависимости диэлектрической проницаемости наблюдается четко выраженный максимум. Интересно, что для ряда исследованных образцов в области T < T_{II} наблюдается еще одна температурная особенность $\varepsilon(T)$ низкотемпературный участок роста, начинающийся при $T \approx T_{III} = 25$ K, причем диэлектрическая проницаемость не насыщается вплоть до температуры жидкого гелия (см. рисунок).

Специфика температурного поведения $\varepsilon(T)$ у различных молекулярных комплексов проявляется, во-первых, в абсолютной величине ε (наибольшими значениями ε обладает соединение $(S_4N_4)_{1.2}C_{60}(C_6H_6)_{0.8})$. Кроме того, видно, что в интервале 200 < T < 260 К форма кривой $\varepsilon(T)$ и, в частности, наклон $\frac{\partial \varepsilon}{\partial T}$, по-видимому, зависят от типа донора (см. рисунок). Однако изменения $\varepsilon(T)$ в этом диапазоне температур сравнимы с абсолютной погрешностью измерений ε в наших экспериментах, что не позволяет сделать окончательного заключения о

связи наклона $\frac{\partial \varepsilon}{\partial T}$ с составом. Отметим, что низкотемпературная аномалия $\varepsilon(T)$ при $T \approx T_{III}$ наблюдалась нами для всех исследованных материалов, включая чистый C₆₀, за исключением комплекса (BTX)C₆₀CS₂.

В области T > 120 К температурные зависимости $\varepsilon(T)$ качественно согласуются с данными, полученными ранее для чистого C₆₀ [3]. Однако для T < 120 К по данным [3,5] $\varepsilon(T) \approx \text{сonst}$, в то время как в нашем случае наблюдается максимум $\varepsilon(T)$. Кроме того, в литературе отсутствуют сведения о низкотемпературной особенности диэлектрической проницаемости при $T_{III} \approx 25$ К.

4. Полученные в настоящей работе экспериментальные данные по диэлектрической проницаемости молекулярных комплексов на основе C₆₀ позволяют сделать несколько выводов.

Во-первых, на кривых $\varepsilon(T)$ для всех исследованных образцов отчетливо видны особенности при $T = T_{II}$, в то время как особенность при $T = T_I$ наблюдается только в чистом C_{60} , а в молекулярных комплексах практически отсутствует. Таким образом, несмотря на то что ориентационный беспорядок в молекулярных комплексах на основе C_{60} принято считать замороженным [6,8,9], отчетливое проявление температур, характерных для перехода в стеклообразное состояние (T_{II}) у чистого C_{60} , позволяет предположить, что некоторые черты этого перехода сохраняются и в указанных соединениях. Повидимому, в молекулярных комплексах на основе C_{60} сохраняется определенная ориентационная степень свободы, вымерзающая при понижении температуры в виде фазового перехода при $T = T_{II}$.

Во-вторых, в выполненных до настоящей работы экспериментах особенность $\varepsilon(T)$ в виде максимума при температуре перехода в стеклообразное состояние не наблюдалось. Этот результат показывает важность подробного исследования дисперсии диэлектрической проницаемости в области частот $\omega \tau \ge 1$, что является задачей будущих исследований. Кроме того, отсутствие особенности $\varepsilon(T)$ при $T = T_{II}$ в диапазоне $\omega \tau \ll 1$ [2,3,5] указывает на то, что простые однопараметрические дисперсионные модели типа дебаевского релаксатора могут применяться для материалов на основе С₆₀ только при относительно высоких температурах ($T > 120 \,\mathrm{K}$), а в области перехода в стеклообразное состояние $T \approx T_{II}$ более адекватными могут оказаться более сложные модели резонансного типа. Отметим, что к аналогичному выводу пришли авторы работы [5].

В-третьих, сходный характер температурных зависимостей $\varepsilon(T)$ для различных материалов на основе C₆₀, полученных в различных реакциях различными способами, делает маловероятным предположение [1,5] о доминирующем влиянии примеси кислорода на диэлектрическую релаксацию фуллеренов. В соответствии с [3,12] мы предполагаем, что полученные температурные зависимости $\varepsilon(T)$ отражают внутренние свойства материалов на основе C₆₀.

В заключение остановимся на низкотемпературной аномалии $\varepsilon(T)$ при $T \approx T_{III}$. В работе [12] для данной

области температур было установлено существование особенности магнитных свойств молекулярного комплекса (ET)₂C₆₀ (где ET — бис(этилендитио)тетратиафульвален), коррелирующей с изломом на температурной зависимости диэлектрической проницаемости, аналогичным показанному на рисунке. Природа наблюдаемого низкотемпературного поведения $\varepsilon(T)$ остается невыясненной, однако факт отсутствия этой особенности у комплекса (BTX)C₆₀CS₂, отличающегося от остальных исследованных материалов тем, что в нем молекулы С₆₀ изолированы друг от друга, указывает на возможное влияние взаимодействия молекул С₆₀ на возникновение низкотемпературной аномалии.

Авторы выражают свою признательность А.А. Волкову за полезные обсуждения.

Список литературы

- M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerens and Carbon Nanotubes. Academic Press, San Diego (1996).
- [2] A. Fartash. Phys. Rev. **B54**, 23, 17 215 (1996).
- [3] P. Mondal, P. Lunkenheimer, A. Loidl. Z. Phys. B99, 527 (1996).
- [4] W. Schranz, A.Fuith, P. Dolinar, H. Warhanek, M. Haluska, H. Kuzmany. Phys. Rev. Lett. 71, 10, 1561 (1993).
- [5] Pevzner, A.F. Hebard, M.S. Dresselhaus. Phys. Rev. B55, 24, 16 439 (1997).
- [6] Izuoka, T. Tachikawa, T. Sugawara, Y. Suzuki, V. Konno, Y. Saito, H. Shinohara. J. Chem. Soc., Chem. Commun. 19, 1472 (1992).
- [7] Д.В. Конарев, Р.Н. Любовская. Успехи химии **68**, 22 (1999).
- [8] D.V. Konarev, Yu.M. Shui'ga, O.S. Roschupkina, R.N. Lyubovskaya. J. Phys. Chem. Solids 58, 1865 (1997).
- [9] D.V. Konarev, E.F. Valeev, Yu.L. Slovokhotov, Yu.M. Shul'ga, R.N. Lyubovskaya. J. Chem. Res. (S), 442 (1997).
- [10] V.N. Semkin, N.V. Drichko, Yu.A. Kimzerov, D.V. Konarev, R.N. Lyubovskaya, A. Graja. Chem. Phys. Lett. 295, 266 (1998).
- [11] С.В. Демишев, А.А. Пронин, Н.Е. Случанко, Н.А. Самарин, А.Г. Ляпин. Письма в ЖЭТФ 65, 4, 527 (1997).
- [12] С.В. Демишев, Л. Векхёйзен, В.В. Мощалков, А.А. Пронин, Н.Е. Случанко, Н.Г. Спицина, Э.Б. Ягубский. Письма в ЖЭТФ 69, 10, 724 (1999).