Флуктуационные процессы в параэлектрической фазе хромаммонийных квасцов

© Г.П. Вишневская, Е.Н. Фролова, А.Р. Фахрутдинов

Казанский физико-технический институт Российской академии наук, 420029 Казань, Россия

E-mail: frolova@sci.kcn.ru

(Поступила в Редакцию 2 августа 1999 г.)

Представлены результаты по измерению времен электронной спин-решеточной релаксации T_1 , а также ширин линий и параметра тонкой структуры спектров ЭПР в хромаммонийных и алюмохромаммонийных квасцах выше температуры фазового перехода. Определены времена корреляции, характеризующие быстрые флуктуационные процессы в интервале температур 84—360 К. Показано, что они описываются двумя экспонентами с различными энергиями активации. Установлены наиболее вероятные источники этих флуктуаций: колебания молекул воды с аномально большими амплитудами из окружения NH_4^+ иона в области повышенных температур и реориентация SO_4^{2-} -групп в области пониженных температур.

Исследованы выветренные квасцы с частично потерянной кристаллизационной водой. Показано, что в них отсутствуют как быстрые флуктуационные процессы, так и фазовый переход.

Методы магнитного резонанса и релаксации способны дать ценную информацию при исследовании фазовых переходов и динамики движения отдельных структурных элементов сегнетоэлектрических кристаллов. К сегнетоэлектрикам относятся и исследованные в данной работе хромаммонийные $NH_4Cr(SO_4)_2 \cdot 12H_2O$, и алюмохромаммонийные $NH_4Al_{0.99}Cr_{0.01}(SO_4)_2 \cdot 12H_2O$ квасцы, которые при температуре выше температуры фазового перехода образуют кристаллы с пространственной группой Pa3 [1]. Они включают в себя октаэдры $Me^{3+}(H_2O)_6$ и $Me^+(H_2O)_6$, связанные друг с другом водородными связями непосредственно или через SO_4 -группы. NH_4Cr -квасцы претерпевают сегнетоэлектрический фазовый переход при 82 K [2].

В квасцах α -типа, к которым относятся и NH₄-квасцы, обнаружены повышенные тепловые колебания нестабильных SO₄-групп [3] и реориентация части SO₄-групп в положение, характерное для γ -квасцов [1,4–6]. Установлено также, что в аммонийных квасцах выше температуры фазового перехода происходит реориентация NH⁴₄-ионов [7]. В значительно меньшей степени изучены флуктуационные процессы, связанные с колебаниями молекул воды из окружения Me⁺ и Me³⁺.

Цель данной работы — исследование методами электронного парамагнитного резонанса и электронной релаксации флуктуационных процессов в параэлектрической фазе хромаммонийных и алюмохромаммонийных квасцов и установление наиболее вероятных источников этих флуктуаций в различных температурных интервалах.

1. Методика эксперимента

Кристаллы $NH_4Cr(SO_4)_2 \cdot 12H_2O$, и $NH_4Al_{0.99}Cr_{0.01}(SO_4)_2 \cdot 12H_2O$ были выращены из водных растворов соответствующих сульфатов металлов, взятых в стехиометрическом соотношении. Квасцы с

частично потерянной кристаллизационной водой NH₄Cr(SO₄)₂ · (12 – *n*)H₂O, где $n \leq 6$, получали вакуумной сушкой исходных образцов в эксикаторе над P₂O₅. Регистрацию спектров ЭПР проводили в *X*- и *Q*-диапазонах длин волн. Времена электронной спин-решеточной релаксации *T*₁ измеряли методом нерезонансного поглощения в параллельных полях [8]. Технические характеристики релаксометра позволяют определять величины *T*₁ от $5 \cdot 10^{-6}$ до $5 \cdot 10^{-10}$ s в области температур 85–370 K.

2. Результаты и их обсуждение

Для исследования особенностей молекулярного структурных элементов в NH₄-квасцах лвижения зависимости мы изучили температурные параметров тонкой структуры спектров ЭПР. ширин линий ЭПР и времен электронной спинрешеточной релаксации T_1 В поликристаллах $NH_4Cr(SO_4)_2 \cdot 12H_2O$, $NH_4Cr(SO_4)_2 \cdot (12 - n)H_2O$ и $NH_4Al_{0.99}Cr_{0.01}(SO_4)_2 \cdot 12H_2O$. Времена T_1 измерялись только для концентрированных по хрому образцов.

Анализ спектров ЭПР показал, что в аммонийных квасцах с полным содержанием кристаллизационной воды выше температуры фазового перехода T_c наблюдается тонкая структура, отвечающая условию сильных магнитных полей $(2D \ll h\nu)$. Параметры тонкой структуры уменьшаются с понижением температуры (рис. 1). При достижении температуры фазового перехода в NH₄Cr-квасцах удваивается количество магнитно-неэквивалентных центров и параметр тонкой структуры возрастает по величине: $D_1 = 1100 \pm 20$ и $D_2 = 1525 \pm 20$ G.

Для определения температурной зависимости ширин линий, обусловленной флуктуационными процессами, необходимо из общей ширины исключить температурнонезависимый вклад. Независимость общей ширины ли-

Рис. 1. Температурные зависимости параметров тонкой структуры D: 1 — для $NH_4Cr(SO_4)_2 \cdot 12H_2O$, 2 — для $NH_4Al_{0.99}Cr_{0.01}(SO_4)_2 \cdot 12H_2O$.

Рис. 2. Температурная зависимость полуширины линии ЭПР на полувысоте ΔH_T для переходов $\pm 3/2 \leftrightarrow \pm 1/2$ ($\theta = 90^\circ$) в NH₄Cr(SO₄)₂ · 12H₂O.

нии от температуры в интервале 320-350 К позволила определить величины этих вкладов, равных 112 G для 100% и 11.5 G для 1% квасцов, а также установить их преимущественно диполь-дипольную природу. Полученная за вычетом постоянного вклада температурная зависимость полуширин линий на полувысоте ΔH_T для переходов $\pm 1/2 \leftrightarrow \pm 3/2$ ($\theta = 90^\circ$) в NH₄CrSO₄ · 12H₂O, определяемая флуктуационными процессами, приведена на рис. 2. Аналогичная зависимость наблюдалась и для смешанных квасцов.

Ниже 180 К для хромовых квасцов и ниже 135 К для алюмохромовых квасцов линии для переходов $\pm 1/2 \leftrightarrow \pm 3/2$ уширяются настолько, что определение их ширин становится неточным. В концентрированных по хрому квасцах центральный переход $\pm 1/2 \leftrightarrow -1/2$ представляет собой огибающую двух диполь-дипольно

уширенных компонент, возникающих из-за эффектов второго порядка теории возмущений за счет сдвига $\sim D^2/\nu_0$ при переходе от $\theta = 0^\circ$ к 90° [9]. В смешанных Al_{0.99}Cr_{0.01}-квасцах в определенном температурном интервале наблюдаются обе компоненты. Обращаем внимание на то, что ширины линий отдельных компонент в этих квасцах явно проходят через максимум при понижении температуры от 313 до 98 К. Максимум находится в области температур 160–210 К, но точную его фиксацию, также как и определение ширины отдельной компоненты мы не проводили, поскольку в указанном интервале температур происходит процесс слияния двух компонент в результате уменьшения *D*.

Для концентрированных квасцов были измерены также времена спин-решеточной релаксации Т₁. Температурная зависимость T_1 представлена на рис. 3. Времена релаксации при температурах выше 100 К являются достаточно малыми и в диапазоне 180-240 К в температурной зависимости $T_1(T)$ намечается минимум, что характерно скорее для жидких, чем для твердых систем; при приближении к температуре фазового перехода наблюдается резкое увеличение T_1 . Эти факты, также как и прохождение ширины линии для перехода $+1/2 \leftrightarrow -1/2$ в смешанных квасцах через максимум, свидетельствуют о наличии быстрого флуктуационного процесса, связанного с молекулярным движением в кристаллах, который резко ослабляется при приближении к температуре фазового перехода Т_с. Следовательно, можно попытаться использовать хорошо развитую теорию электронной релаксации в жидкостях, чтобы описать наблюдаемые температурные зависимости ΔH_T и T_1 при температурах выше температуры фазового перехода.

Для систем со спином S > 1/2 электронная релаксация в жидкостях происходит в результате модуляции компонент тензора тонкого расщепления вращательным движением комплексов (механизм МакГарви [10,11]) или

Рис. 3. Температурная зависимость времени электронной спин-решеточной релаксации T_1 в NH₄Cr(SO₄)₂ · 12H₂O.

в результате соударений комплекса с молекулами растворителя (механизм Бломбергена–Моргана [12]). Последний механизм предполагает изменение конфигурации комплекса и, следовательно, параметра тонкой структуры с изменением поступательного движения частиц жидкости. Однако форма выражений для скоростей релаксации в обоих механизмах является идентичной, меняется лишь представление о времени корреляции. Для систем со спином S = 3/2 значения скоростей релаксации могут быть описаны следующими выражениями:

$$\frac{1}{T_2} = \frac{6\Delta^2}{5} \left(\tau_c + \frac{\tau_c}{1 + \omega_0^2 \tau_c^2} \right),$$
 (1)

для переходов $\pm 1/2 \leftrightarrow \pm 3/2$

$$\frac{1}{T_2} = \frac{6\Delta^2}{5} \left(\frac{\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right), \qquad (2)$$

для перехода $+1/2 \leftrightarrow -1/2$

$$\left\langle \frac{1}{T_1} \right\rangle = \frac{12\Delta^2}{25} \left(\frac{\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right).$$
 (3)

Здесь $\langle 1/T_1 \rangle$ — средние значения скорости спинрешеточной релаксации, $\Delta^2 = 2/3D^2 + 2E^2$, причем для исследованных квасцов значение параметра ромбичности *Е* можно считать близким к нулю; ω_0 — частота Лармора, $\tau_c = \tau_{c0} \exp(E_a/RT)$ — время корреляции, связанное с флуктуациями тензора тонкого расщепления D; Еа — энергия активации флуктуационного процесса. Согласно уравнению (1), ширина линии для переходов $\pm 1/2 \leftrightarrow \pm 3/2$ должна возрастать с увеличением времени корреляции при понижении температуры, а согласно уравнению (2), ширина линии для перехода $+1/2 \leftrightarrow -1/2$ должна проходить через максимум, как это и наблюдается на опыте. Минимум в зависимости $T_1(T)$, предсказываемый уравнением (3), выражен слабо в отличие от исследованных ранее хромокалиевых квасцов с более короткими T_1 [6]. В данном случае он может частично компенсироваться вкладом от процесса рамановского рассеяния, который приводит к уменьшению T_1 с повышением температуры $(T_1 \sim a/T^2)$, в то время как механизм, связанный с быстрыми флуктуационными процессами, должен приводить к возрастанию T_1 .

Используя выражения (1)-(3) и экспериментальные данные, полученные независимыми методами для ширин линий и времен спин-решеточной релаксации, а также значения параметров тонкой структуры, определенные из положения линий спектров ЭПР, мы имеем возможность оценить параметры флуктуационного процесса, связанного с молекулярным движением структурных элементов хромаммонийных и алюмохромаммонийных квасцов в параэлектрической фазе. На рис. 4 приведены логарифмические зависимости времен корреляции τ_c от обратной температуры для NH₄Cr(SO₄)₂ · 12H₂O, рассчитанные при температурах выше 180 К по данным $1/T_2$ и при температурах ниже 180 К по данным T_1 ,

Рис. 4. Зависимость $\ln \tau_c$ от обратной температуры: 1 — для NH₄Al_{0.99}Cr_{0.01}(SO₄)₂ · 12H₂O (из 1/*T*₂); 2 — для NH₄Cr(SO₄)₂ · 12H₂O (из 1/*T*₂); 3 — для NH₄Cr(SO₄)₂ · 12H₂O (из *T*₁).

и для $NH_4Al_{0.99}Cr_{0.01} \cdot 12H_2O$, рассчитанные только по данным $1/T_2$. Эти зависимости для концентрированных и смешанных квасцов являются однотипными и показывают, что релаксационные процессы в обоих квасцах имеют двухэкспоненциальный характер. Определенные из экспериментальных данных параметры флуктуаций имеют следующие значения: $E_a = (3.1 \pm 0.05)$ kcal/mol, $au_{c0} = (1.3 \pm 0.1) \, 10^{-14} \, \mathrm{s}$ в высокотемпературной области и $E_a = (1.1 \pm 0.05)$ kcal/mol, $\tau_{c0} = (3.6 \pm 0.3) \, 10^{-12}$ s в низкотемпературной области. Отметим, что если использовать значения времен корреляции, полученные из ширин линий в высокотемпературном диапазоне $(E_a = 3.1 \text{ kcal/mol}, \tau_{c0} = 1.3 \cdot 10^{-14} \text{ s}),$ и рассчитать по формуле (3) значения T₁, то выше 240-260 К T₁ возрастает с повышением температуры, т.е. в зависимости $T_1(T)$ проявляется минимум.

На рис. 5 представлена также зависимость $\ln T_1$ от $\ln(T - T_c)$ для NH₄Cr(SO₄)₂ · 12H₂O. Из рисунка следует, что $T_1 \sim (T - T_c)^{-n}$, где n = 1.9 для $(T - T_c) > 38$ К и n = 0.8 для $3 < (T - T_c) < 30$ К. Подобные результаты были получены и для других сегнетоэлектриков, в том числе и других квасцов. Приведенные нами значения n близки к теоретическим n = 0.5 вблизи температуры Кюри и n = 2 вдали от нее в области проявления сужения линии ЭПР за счет движения и экспериментальным оценкам, полученным из ширин линий ЭПР Cr³⁺ в триглицинсульфате и квасцах [13,14].

Мы исследовали также выветренные квасцы с частично потерянной кристаллизационной водой. Нужно отметить, что по сравнению с хромокалиевыми квасцами [15] хромаммонийные квасцы теряют воду значительно труднее. Поэтому даже при вакуумной сушке над P_2O_5 в объеме образца остается значительная часть частиц с полным количеством кристаллизационной воды, на что указывают спектры ЭПР этих образцов. Для частиц с

Рис. 5. Зависимость $\ln T_1$ от $\ln(T - T_c)$ для $NH_4Cr(SO_4)_2 \cdot 12H_2O$. $T_c = 82$ K.

неполным содержанием кристаллизационной воды установлено наличие двух неэквивалентных центров Cr^{3+} с независящими от температуры величинами параметров $D_1 = 4015 \pm 20 \text{ G}$ и $D_2 = 5000 \pm 20 \text{ G}$. Ширины линий отдельных компонент тонкой структуры этих центров также являются постоянными в диапазоне температур 82-300 K и для переходов $\pm 3/2 \leftrightarrow \pm 1/2$ составляют: $\delta H_1 = 850 \pm 20 \text{ G}$ и $\delta H_2 = 750 \pm 20 \text{ G}$. Фазовый переход для выветренных квасцов в изученном диапазоне температур не наблюдается.

Представленные экспериментальные данные по температурным зависимостям параметров тонкой структуры, ширин линий ЭПР и времен спин-решеточной релаксации однозначно свидетельствуют о наличии быстрых флуктуационных процессов в хромаммонийных и алюмохромаммонийных квасцах выше температуры фазового перехода. Следовательно, применение жидкостной модели релаксации в данном случае является вполне оправданным. Исследуя электронную релаксацию и спектры ЭПР Cr³⁺, мы, прежде всего, следим за статическими и динамическими искажениями октаэдра Cr³⁺(H₂O)₆. В квасцах октаэдры $Me^+(H_2O_6)_6$, $Me^{3+}(H_2O)_6$ и RO_4 группы связаны друг с другом водородными связями. Поэтому движение одних структурных элементов может непосредственно или через водородные связи оказывать влияние на другие структурные элементы.

В хромаммонийных квасцах расстояние $Cr-H_2O$, определенное рентгеновскими методами, хорошо согласуется с суммой радиусов Cr^{3+} и молекул воды, в то время как расстояние NH_4-H_2O на 0.17 Å превосходит сумму радиусов NH_4^+ -групп и молекул воды [1,16]. Согласно ряду работ (см., например, [17]), нарушение условий плотной упаковки способствует трансляционным колебаниям молекул воды с аномально высокими амплитудами внутри "просторных" полостей на так называемой низкочастотной квазилокализованной моде. И если коллективные колебания кристаллической решетки в целом дают, например, рамановский механизм релаксации, то колебания с повышенными амплитудами относительно слабо связанных с кристаллической решеткой молекул воды могут обеспечить механизм релаксации, аналогичный жидким системам. Для данного соединения такие колебания могут совершать молекулы воды из окружения иона NH₄⁺. Мы полагаем, что их колебания являются одним из основных источников флуктуаций локального окружения Cr³⁺, приводящих к возрастанию параметра тонкой структуры с повышением температуры, и являются одним из основных видов движения с энергией активации $E_a = 3.1 \pm 0.05$ kcal/mol в релаксационном механизме, аналогичном механизму Бломбергена-Моргана. Следует также заметить, что в водных растворах ион NH_4^+ относится к отрицательно гидратирующимся катионам, усиливающим подвижность молекул воды в растворителе [18]. Подобные эффекты могут наблюдаться и в кристаллогидратах. Потеря молекул воды из окружения одновалентного иона, как показал наш эксперимент, приводит не только к изменению абсолютной величины параметра тонкой структуры, но и к исчезновению его температурной зависимости.

Еще заметнее влияние колебаний молекул из окружения одновалентного иона на процессы релаксации и температурную зависимость параметра тонкой структуры проявляются в хромокалиевых квасцах [6,15], относящихся, как и NH₄-квасцы, к квасцам α -типа. Времена релаксации T_1 в KCr-квасцах меньше, чем в NH₄Cr-квасцах, параметр тонкой структуры изменяется с температурой в калийных квасцах сильнее, чем в аммонийных. Так, при изменении температуры от 160 до 280 К в КСг-квасцах параметр D возрастает в 3.3 раза, в то время как в NH₄Crквасцах — в 1.7 раза. Эти данные согласуются с большей способностью иона К⁺ гидратироваться отрицательно по сравнению с ионом NH₄⁺ [18] и с бо́льшим размером полости, внутри которой колеблются молекулы воды (расстояние K-H₂O превышает сумму радиусов K⁺ и H₂O на 0.22 Å по сравнению с 0.17 Å в аммонийных квасцах). В то же время в NaAl_{0.99}Cr_{0.01} · 12H₂O квасцах, относящихся к ү-типу, параметр тонкой структуры с повышением температуры не растет, а уменьшается [19] и его изменение гораздо более слабое, чем в описанных выше квасцах α -типа (для того же интервала температур параметр D уменьшается с ростом температуры в 1.2 раза). Известно, что ион Na⁺ относится не к отрицательно, а к положительно гидратирующимся катионам [18]. Следовательно, флуктуационный процесс в этих квасцах не может быть связан с колебанием молекул воды из окружения одновалентного иона. Полагают, что за поведение ширин линий ЭПР и температурную зависимость параметра тонкой структуры D в Na-квасцах ответственны колебания SO_4^{2-} -групп, которые через водородные связи оказывают статическое и динамическое влияние на октаэдр $Cr^{3+}(H_2O)_6$. Для α -квасцов, которые отличаются от γ -квасцов ориентацией сульфогрупп, существенна также их частичная реориентация в положение, характерное для γ -квасцов (реориентация между двумя ларсоновскими конфигурациями) [3,4,6].

В NH₄- и К-квасцах несомненно присутствуют оба источника флуктуаций, связанных как с колебаниями молекул воды с аномально большими амплитудами из окружения одновалентных ионов, так и с колебаниями и реориентацией сульфогрупп. Если в хромокалиевых квасцах вплоть до температуры фазового перехода (158 К) превалирует первый процесс, то в хромаммонийных квасцах ниже 170 К, а в алюмохромаммонийных ниже 210 К, по-видимому, превалирует второй процесс. Полученные для низкотемпературных флуктуаций величины $E_a = 1.1 \pm 0.05$ kkal/mol и $\tau_{c0} = (3.6 \pm 0.3) 10^{-12}$ s хорошо согласуются с величинами $E_a = 1$ kkal/mol и $\tau_{c0} = 3.3 \cdot 10^{-12}$ s, полученными из рамановских спектров для реориентирующихся SO₄^{2–}-групп [5,20].

Известно, что барьер для вращения NH_4^+ иона в кислородном окружении (например, в NH_4ClO_4) при температурах выше 50 K составляет 0.6–1 kkal/mol. Хотя эти величины не очень сильно отличаются от величин, полученных из зависимостей $T_1(T)$ и $\delta H(T)$ при пониженных температурах, мы считаем, что реориентация NH_4^+ ионов является менее вероятным источником флуктуаций, влияющим на релаксацию ионов Cr^{3+} , чем реориентация SO_4^{2-} -групп.

Данные по ИК-спектроскопии в хромокалиевых, алюмокалиевых и алюмоаммонийных квасцах [4,6] также указывают на наличие разупорядоченных сульфатных групп, количество которых растет с понижением температуры, и на увеличение числа молекул воды с разнотипными водородными связями как в окружении одновалентных, так и трехвалентных ионов металлов при приближении к температуре фазового перехода.

Таким образом, двумя независимыми радиоспектроскопическими методами (резонансным и нерезонансным) получена количественная информация о характере интенсивного молекулярного движения в параэлектрической фазе хромаммонийных и алюмохромаммонийных квасцов. Установлены наиболее вероятные источники флуктуаций: колебания с повышенными амплитудами молекул воды из окружения одновалентного иона и колебания и реориентация SO₄^{2–}-групп. Показано, что первый процесс играет основную роль при температурах более удаленных от фазового перехода, второй — вблизи фазового перехода.

Список литературы

- [1] A.C. Larson, D.T. Crommer. Acta Cryst. 22, 793 (1967).
- [2] B. Bleaney. Proc. Roy. Soc. A204, 203 (1950).
- [3] G.E. Bacon, W.E. Gardner. Proc. Roy. Soc. 246, 1244, 78 (1958).
- [4] G.M. Venkatesh, P.S. Narayanna. Indian J. Pure and Appl. Phys. 9, 1, 39 (1971).
- [5] Sh. Sinha, R. Srinivasan. Chem. Phys. Lett. 88, 1, 115 (1982).
- [6] Г.П. Вишневская, А.Р. Фахрутдинов. ФТТ 31, 7, 89 (1989).
- [7] B.O. Fimland, I. Svare. Phys. Scr. (Sweden) 36, 3, 559 (1987).
- [8] Б.А. Волков, Г.П. Вишневская, В.А. Горожанин, Р.Г. Рамазанов. ПТЭ 4, 167 (1973).
- [9] G. Burns. J. Appl. Phys. 32, 9, 2048 (1961).

- [10] B.R. McGarvey. J. Phys. Chem. **61**, *9*, 1232 (1967).
- [11] M. Rubinstein, A. Baram, L. Luz. Molec. Phys. 20, 1, 67 (1971).
- [12] N. Bloembergen, L.O. Morgan. J. Chem. Phys. 34, 3, 842 (1961).
- [13] K. Nishimura, T. Hashimoto. J. Phys. Soc. Japan 35, 6, 1699 (1973).
- [14] R. Navalgund, L.C. Gupta. Ferroelectrics 14, 767 (1976).
- [15] Г.П. Вишневская, А.Р. Фахрутдинов. Радиоспектроскопия. Межвузовский сборник научных трудов 19, 54 (1989).
- [16] Ч. Коулсон. Валентность. Мир, М. (1965). 426 с.
- [17] С.П. Габуда, А.Ф. Ржавин. Ядерный магнитный резонанс в кристаллогидратах и гидратированных белках. Наука, Новосибирск (1978). 159 с.
- [18] О.Я. Самойлов. Структура водных растворов электролитов и гидратация ионов. Изд-во АН СССР, М. (1957). 182 с.
- [19] J. Pietrzak, L. Kruczynski. Phys. Stat. Sol. (a) 63, K143 (1981); 71, K231 (1982).
- [20] H.H. Eysel, G. Schumacher. J. Chem. Phys. Lett. 47, 168 (1977).