Оптические и рентгеновские исследования симметрии искаженных фаз аммонийного криолита (NH₄)₃ScF₆

© С.В. Мельникова, С.В. Мисюль*, А.Ф. Бовина, М.Л. Афанасьев

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия *Красноярский государственный аграрный университет,

660049 Красноярск, Россия

E-mail: flerov@iph.krasnoyarsk.su

(Поступила в Редакцию 20 июля 1999 г.)

Выполнены поляризационно-оптические и рентгеновские исследования монокристаллических пластинок различных срезов кристалла $(NH_4)_3ScF_6$ в широком температурном интервале, включающем кроме известных двух фазовых переходов недавно найденный третий. Установлена следующая последовательность изменения симметрии: $O_h^5 - Fm3m (Z = 4) \leftrightarrow C_{2h}^5 - P12_1/n1 (Z = 2) \leftrightarrow C_{2h}^3 - I12/m1 (Z = 16) \leftrightarrow C_i^1 - I\overline{1} (Z = 16)$.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-15-96700).

Кристаллы $A_3M^{3+}X_6$ со структурой криолита (пространственная группа Fm3m, Z = 4) принадлежат одному из родственных семейств перовскитоподобных соединений. Трехмерный кристаллический каркас этих соединений образован октаэдрами AX_6 и $M^{3+}X_6$, связанными вершинами, а межоктаэдрические полиэдры заняты катионами A^+ . Фтористые кристаллы с атомарными катионами A^+ претерпевают, как правило, структурные фазовые переходы (ФП) при достаточно высоких температурах, что затрудняет их детальное изучение. В этом отношении более привлекательными объектами исследования являются соединения с аммонием, в которых ФП обнаружены сравнительно недавно. Присутствие аммония в структуре во многих случаях значительно снижает температуру стабильности кубической фазы в этих веществах [1–8].

К настоящему времени установлено, что в большинстве аммонийных криолитов переходы из кубической фазы связаны с изменением ориентационного движения сразу двух структурных групп: $(NH_4)^+$ и $(MF_6)^{3+}$. Температура потери устойчивости кубической фазы зависит от размера иона М³⁺, от этого же фактора зависит и последовательность смены симметрии при ФП, претерпеваемых кристаллами. В веществах с малым радиусом трехвалентного иона $(R_{\mathrm{M}}^{3+}\leqslant R_{\mathrm{Fe}}^{3+})$ происходит только один ФП в триклинную фазу с предполагаемой симметрией *P*1 [6,8]. В соединениях с более крупными катионами (Sc, In) наблюдались два фазовых перехода [8]. Более поздние исследования теплоемкости поликристаллических образцов (NH₄)₃ScF₆ методом адиабатического калориметра [9] позволили обнаружить в них три аномалии при температурах $T_1 = 330$, $T_2 = 293$ и $T_3 = 243$ К.

Симметрия этого кристалла выше T_1 в [8] определялась как кубическая Fm3m, Z = 4, а при 290 К как моноклинная $P2_1/n$, Z = 2. Рентгеновские исследования, проведенные на порошках в интервале температур, включающем фазы G_0 , G_1 и G_2 , показали заметное расщепление линий на дифрактограммах при переходе из кубической фазы, но без скачка объема. Однако при переходе T_2 ($T_{exp} = 290$ K) не замечено никаких изменений ни в количестве линий, ни в их интенсивности по сравнению с фазой G_1 .

Отметим, что рентгено-дифракционные исследования малых искажений структуры и изменение симметрии в перовскитоподобных кристаллах лучше проводить на монокристаллических образцах, а не на порошковых, так как эксперимент на монокристаллах дает более полную информацию. Так, авторам [10,11] удалось определить сложную последовательность изменения симметрии в эльпасолитах, исследуя законы двойникования в них и наблюдая за рентгеновскими отражениями от ориентированных монокристаллических пластинок. Исходя из этого, задачей настоящей работы является подтверждение обнаруженных в [9] трех $\Phi\Pi$ и определение симметрии искаженных фаз криолита (NH₄)₃ScF₆.

1. Эксперимент

Синтез соединения $(NH_4)_3ScF_6$ производился взаимодействием эквивалентных количеств NH_4F и Sc_2O_3 в HF (10%). Крупные ограненные монокристаллы были выращены методом медленного регулируемого испарения нейтрального насыщенного водного раствора при температуре 305 К в течение 8 месяцев.

Рентгеновские исследования кристалла $(NH_4)_3ScF_6$ выполнены на дифрактометре ДРОН-2.0, оснащенном низкотемпературной УРНТ-180 и высокотемпературной ГПВТ-2000 приставками (Си K_{α} -излучение, графитовый монохроматор) в широком температурном интервале (120–360 K). В качестве образцов использовались монокристаллические пластинки срезов (100)₀, (110)₀ и (111)₀, а также порошки, полученные из монокристаллов (NH₄)₃ScF₆ (здесь и далее нижний индекс в обозначении плоскостей и направлений нумерует фазу кристалла).

На тонких кристаллических пластинах различных кристаллографических направлений проведены исследования с помощью поляризованного микроскопа. При тол-

Рис. 1. Фотографии двойниковой структуры и схема двойникования в (100)₀-срезе кристалла (NH₄)₃ScF₆ при комнатной температуре.

щине образца 0.1 mm и более в процессе охлаждения можно наблюдать только один фазовый переход $T_1 \downarrow = 326 \,\mathrm{K}, T_1 \uparrow = 328 \,\mathrm{K}$ из кубической фазы, сопровождающийся появлением двойников и растрескиванием. В таком образце при комнатной температуре в поляризованном свете наблюдается сложная, переплетающаяся двойниковая структура. При дальнейшем охлаждении ниже T₂ и T₃ не видны дополнительные изменения в картине двойникования. И только когда толщина образца выбирается меньше 0.5 mm, появляются обширные, четко погасающие монодоменные области, в которых можно наблюдать все три ФП. При простых наблюдениях в поляризованном свете четко видны только два ФП. При Т₁ двойниковая структура появляется, а ниже Т₃ становится более сложной. Никаких изменений в области $T \approx T_2$ не видно.

При комнатной температуре в тонком образце среза $(100)_0$ видны двойниковые границы вдоль $[100]_0$ и $[110]_0$ (рис. 1). Наблюдаемые двойники можно разделить на три типа. І — направление погасания вдоль $[110]_0$ в фазах G_1 и G_2 (двойник 1); II — направления погасания двойников (2, 4) отличается от направления $[100]_0$ на угол $\pm \varphi_1$ и зависит от температуры; III — направление погасания

вдоль $[100]_0$ в фазе G_1 , а в G_2 — вдоль $[100]_0 \pm \varphi_2$ (двойник 3). Температурные зависимости углов поворота оптической индикатрисы отдельных двойников $\varphi_1(T)$ и $\varphi_2(T)$ в плоскости $(100)_0$ представлены на рис. 2. В процессе охлаждения ниже $T_1 = 326$ К имеет место

Рис. 2. Температурная зависимость угла поворота оптической индикатрисы в (NH₄)₃ScF₆.

Фаза	G_3	G_2	G_1	G_0
Пространственная группа	$C_i^1 - I\bar{1}$	$C_{2h}^3 - I12/m1$	$C_{2h}^5 - P12_1/n1$	$O_h^5 - Fm3m$
$Z = T_{ m exp}, { m K}$	16 173	16 273	2 303	4 353
Параметры ячейки Бравэ				
$\begin{array}{c} \mathbf{a}_i, \mathrm{\AA} \\ \mathbf{b}_i \\ \mathbf{c}_i \\ \alpha, \deg \\ \beta, \deg \\ \gamma, \deg \\ V, \mathrm{\AA}^3 \end{array}$	$\begin{array}{c} 12.874(-\mathbf{b}_0+\mathbf{c}_0)\\ 12.875(\mathbf{b}_0+\mathbf{c}_0)\\ 18.898(2\mathbf{a}_0)\\ 90.19\\ 89.60\\ 90.09\\ 3132.216\end{array}$	$\begin{array}{c} 12.944(-\mathbf{b}_0+\mathbf{c}_0)\\ 12.926(\mathbf{b}_0+\mathbf{c}_0)\\ 18.860(\mathbf{a}_0)\\ 90\\ 89.78\\ 90\\ 3155.522\end{array}$	$\begin{array}{c} 6.481(1/2(-\mathbf{b}_0+\mathbf{c}_0))\\ 6.472(1/2(\mathbf{b}_0+\mathbf{c}_0))\\ 9.408(\mathbf{a}_0)\\ 90\\ 89.90\\ 90\\ 394.618\end{array}$	$\begin{array}{c} 9.281(\mathbf{a}_{0})\\ 9.281(\mathbf{b}_{0})\\ 9.281(\mathbf{c}_{0})\\ 90\\ 90\\ 90\\ 799.308 \end{array}$
Схема расщепления рефлексов				
(h00)				
(<i>hh</i> 0)	ш			
(hhh)				
Наличие сверхструктурных рефлексов	++	++	+	-

Кристаллографические характеристики четырех фаз (NH₄)₃ScF₆

небольшая разориентация оптических индикатрис $2\varphi_1$ в двойниках (2 и 4) ($\varphi_1 \approx 4 \pm 1^\circ$). Немного ниже комнатной температуры ($T_2 = 290 \,\mathrm{K}$) угол φ_1 начинает резко возрастать, достигая значения $20 \pm 1^{\circ}$ в области 230 К. Никаких изменений в картине двойникования при этом не наблюдается. В процессе дальнейшего охлаждения ниже Т₃ появляется дополнительная схема двойников. Наблюдаемое ранее четкое погасание вдоль [110]₀ в области (1) нарушается. Происходит ФП первого рода с большим температурным гистерезисом, причем его температура в процессе охлаждения ($T_3 \downarrow$) не постоянна и зависит от многих факторов: скорости охлаждения, выбора двойника, за которым ведется наблюдение, и др. В результате величина температурного гистерезиса варьируется в пределах $\Delta T_3 = 30 - 13$ К. При нагревании ФП происходит всегда при $T_3 \uparrow = 230$ К.

Основываясь на данных оптических наблюдений в поляризованном свете, можно утверждать, что в кристалле $(NH_4)_3ScF_6$ имеет место следующая последовательность фазовых переходов: $Fm3m(G_0) \leftrightarrow$ моноклинная $(G_1) \leftrightarrow$ моноклинная $(G_2) \leftrightarrow$ триклинная (G_3) . Согласно погасаниям в двойниках, в моноклинных фазах G_1 и G_2 ось второго порядка располагается по [110]₀.

Изменения в профилях рентгеновских отражений от монокристаллических пластинок и расщепления рефлексов на дифрактограммах порошков при различных температурах (см. таблицу) указывают на наличие, по крайней мере, двух фазовых переходов при $T_1 \uparrow = 328$ К и $T_3 \uparrow = 230$ К. Исходная фаза G_0 кубическая с гранецентрированной ячейкой F, параметры ячейки при 353 К приведены в таблице. Расщепления основных рефлексов позволили выбрать симметрии искаженных фаз G_1 и G_2 как моноклинные, а фазы G_3 — как триклинную.

В процессе охлаждения ниже температуры Т₁ (фаза G_1) возникает система сверхструктурных отражений типа (hk0) и (hkl), для которых суммы (h + k), (h + l)и (k + l) являются нечетными числами. Среди рефлексов типа (h00) и (hh0) наблюдаются отражения только с четными значениями индекса h (индексы рефлексов h, k, l выбраны относительно осей ячейки кубической фазы G_0). Несмотря на то что расщепления рефлексов в промежутках $T_1 - T_2$ и $T_2 - T_3$ практически совпадают и не указывают на наличие фазового перехода, ниже T_2 к уже имеющимся добавляются сверхструктурных отражения типа (h + 1/2, h + 1/2, h + 1/2), (h00) и (hh0), где *h* — любое целое число. Сверхструктурные отражения, появившиеся в G₁ и G₂, остаются и наблюдаются в низкосимметричной фазе G₃. Расщепление рефлексов и появление сверхструктурных отражений наглядно свидетельствуют о существовании трех ФП.

Рис. 3. Зависимость линейных размеров и объема ячейки Бравэ кристалла $(NH_4)_3ScF_6$ от температуры. Объем элементарной ячейки в фазе G_1 увеличен в 2 раза, а в G_2 и G_3 уменьшен в 4 раза.

Рис. 4. Температурные зависимости угловых параметров ячейки Бравэ кристалла (NH₄)₃ScF₆: 1 — (90 – α), 2 — (90 – γ), 3 — (90 – β).

Температурные зависимости линейных и угловых параметров кристаллической ячейки в фазах G_0 , G_1 , G_2 и G_3 определялись по положению компонент рефлекса (8, 8, 0) (рис. 3, 4). Схема расщепления данного рефлекса приведена в таблице. Из рис. З видно, что линейные параметры элементарной ячейки резко изменяются при переходе из кубической фазы в фазу G_1 , при этой же температуре наблюдается скачок объема ячейки порядка 0.5% V_0 . При переходах T_2 и T_3 особенностей в поведении линейных параметров не наблюдается. Параметры моноклинных и триклинной ячеек вдоль направлений a_i и b_i практически совпадают. На температурной зависимости углов ячейки (рис. 4) видны три особые точки, положения которых соответствуют трем ФП. Температурные зависимости угла моноклинности $\beta(T)$ и угла поворота оптической индикатрисы $\varphi_1(T)$ (рис. 2) в фазах G_1 и G_2 имеют сходный вид.

2. Обсуждение результатов

Для выбора пространственных групп искаженных фаз кристалла учтем следующее: в семействе кристаллов АзМ³⁺Х₆ наблюдались только центросимметричные искаженные фазы [1-11]; согласно поляризационнооптическим наблюдениям, ось второго порядка в моноклинных фазах G₁ и G₂ располагается по направлению [110]₀, т.е. вдоль диагонали грани кубической ячейки. Эти положения существенно уменьшают перечень возможных пространственных групп низкосимметричных моноклинных фаз от C_{2h}^1 до C_{2h}^6 и делают однозначным выбор симметрии триклинной фазы — C_i^1 . Погасания структурных и сверхструктурных отражений, расщепления специально выбранных рефлексов при отражении рентгеновских лучей от монокристаллических пластинок позволили выбрать конкретные пространственные группы искаженных фаз. Сведения о симметрии фаз (NH₄)₃ScF₆, размерах и ориентации ячеек Бравэ собраны в таблице. Заметим, что в общепринятой установке (см. [12]) ячейка Бравэ моноклинной фазы G₂ должна быть базоцентрированной, а триклинной фазы G₃ простой, но для удобства в настоящей работе ячейки Бравэ этих фаз выбраны объемноцентрированными. Видно, что в G₁ ячейка Бравэ имеет в 2 раза меньший, а в G_2 и в G_3 в 4 раза большие, чем в фазе G_0 , объемы. Однако примитивные ячейки в G_0, G_1, G_2 и G_3 содержат соответственно 1, 2, 8, 8 формульных единиц.

Представим вероятную картину искажений структуры кристалла (NH₄)₃ScF₆. Для этого воспользуемся данными из недавно проведенных калориметрических [9] и ЯМР исследований криолитов с М³⁺ — Ga, V, Fe, In [7]. Согласно работам [7,9], можно сделать вывод, что в скандиевом криолите при ФП происходят превращения типа порядок-беспорядок ФП при Т₁ связан с частичным упорядочением жестких октаэдрических групп ScF₆ и упорядочением тетраэдрических групп NH₄. При T₂ происходит окончательное упорядочение октаэдров Вероятнее всего, в G₂ и G₃ октаэдрические ScF₆. и тетраэдрические группы полностью упорядочены и фазы различаются только степенью искажений ячейки Бравэ. Изменение энтропии, связанное с полным упорядочением октаэдрических и тетраэдрических групп, составляет $\Delta S = R(\ln 2 + \ln 8) = 2.77R$. Такая величина ΔS хорошо согласуется с результатами, полученными в [9] для данного кристалла. Суммарное изменение энтропии в процессе трех ФП по работе [9] составляет $\sum \Delta S_i = (2.50 \pm 0.18)R.$

В заключение отметим работу [8], в которой симметрия фазы G_3 определена, как $P\overline{1}$. Наши исследования не противоречат, а дополняют результаты упомянутой работы. В [8] симметрия фаз (NH₄)₃ScF₆ определялась на

порошковых образцах, исходя из расщепления рефлексов на рентгенограммах. О трансляционной симметрии по этим результатам судить трудно. Настоящая работа помимо сведений о точечной симметрии всех фаз указывает также на изменение трансляционной симметрии, т. е. на соотношение решеток Бравэ, чего нет в работе [8].

Список литературы

- [1] S. Mørup, N. Thrane. Solid State Commun. 11, 1319 (1972).
- [2] K. Moriya, T. Matsuo, H. Suga, S. Seki. Bull Chem. Soc. Jpn. 50, 8, 1920 (1977).
- [3] E.G. Steward, H.P. Rocksby. Acta Cryst. 6, 1, 49 (1953).
- [4] H. Bode. E. Voss, Z. Anorg. Allgem. Chemie 290, 1–2, 1 (1957).
- [5] K. Moriya, T. Matsuo, H. Suga, S. Seki. Bull Chem. Soc. Jpn. 52, 11, 3152 (1979).
- [6] K. Kobayashi, T. Matsuo, H. Suga, S. Khairoun, A. Tressaud. Solid State Commun. 53, 8, 719 (1985).
- [7] A. Sasaki, Y. Furukawa, D. Nakamura. Ber. Bunsenges. Phys. Chem. 93, 1142 (1989).
- [8] A. Tressaud, S. Khairoun, L. Rabardel, T. Kobayashi, T. Matsuo, H. Suga. Phys. Stat. Sol. A98, 2, 407 (1986).
- [9] И.Н. Флёров, М.В. Горев, Т.В. Ушакова. ФТТ 41, 3, 523 (1999).
- [10] K.S. Aleksandorv, S.V. Melnikova, S.V. Misjul. Phys. Stat. Sol. A104, 545 (1987).
- [11] И.Н. Флёров, М.В. Горев, С.В. Мельникова, С.В. Мисюль, В.Н. Воронов, К.С. Александров. ФТТ 34, 7, 2185 (1992).
- [12] International Tables for X-ray crystallography. Vol. 1.: Kynoch press. Birmingham, (1952).