Сечения возбуждения и девозбуждения излучающих нанокластеров в кремнии, легированном редкоземельными элементами

© С.А. Кривелевич, М.И. Маковийчук, Р.В. Селюков

Институт микроэлектроники и информатики Российской академии наук, 150007 Ярославль, Россия

E-mail: sel@imras.yar.ru

Рассчитаны сечения возбуждения и девозбуждения светоизлучающих нанокластеров в кремнии, легированном редкоземельными элементами. Рассмотрено два вида девозбуждения: процесс с излучением центром фотона и процесс с передачей энергии кластера рассеянному электрону. Показано, что сечения этих двух процессов значительны, поэтому девозбуждение играет важную роль в динамике концентрации возбужденных редкоземельных центров в кремнии.

1. Введение

Один из путей создания светоизлучающих структур на основе кремния — легирование этого материала атомами редкоземельных элементов (РЗЭ) [1–4]. Люминесценция в таких структурах возникает за счет переходов электронов между спин-орбитально расщепленными 4f-состояниями редкоземельного атома, входящего в оптически активный центр. Такое излучение происходит на длинах волн, соответствующих слабому поглощению в кремнии. Это открывает перспективу использования полученных структур в системах оптической связи между компонентами интегральных схем.

Наибольшая интенсивность электролюминесценции в кремнии, легированном РЗЭ, наблюдается при обратном смещении, подаваемом на сформированные p-n-переходы. Возбуждение оптически активных центров в этом случае происходит по ударному механизму при рассеянии горячих носителей. Однако процессы рассеяния могут приводить и к девозбуждению уже возбужденного центра, поэтому необходимо знать зависимости сечений этих процессов от прикладываемого электрического поля. Ранее уже производились расчеты сечения возбуждения этих центров [5-7]. Основная цель данной работы — расчет сечений девозбуждения в изучаемых структурах.

2. Расчет сечений возбуждения и девозбуждения

Рассмотрим процесс девозбуждения центров. Данный процесс может проходить как с излучением редкоземельным атомом фотона, так и с передачей энергии рассеянному электрону. В обоих случаях процесс не имеет порога; следовательно, привести к девозбуждению может электрон с любой энергией. Таким образом, сечения соответствующих процессов необходимо вычислять в рамках общей теории рассеяния. Однако в случае безызлучательного девозбуждения можно воспользоваться принципом детального равновесия в его приложении к

процессам рассеяния [8]. Формулировка этого принципа в данном случае выглядит следующим образом:

$$\frac{d\sigma_{\rm dw}}{k'^2 d\Omega} = \frac{d\sigma_{\rm ex}}{k^2 d\Omega}.$$
 (1)

Здесь k и k' — волновые векторы падающего и рассеянного электронов соответственно, $d\sigma_{\rm dw}/d\Omega$ — дифференциальное сечение безызлучательного девозбуждения, $d\sigma_{\rm ex}/d\Omega$ — дифференциальное сечение процесса, обращенного по времени по отношению к первому процессу. Легко видеть, что таким процессом является ударное возбуждение, в выражении для которого волновые векторы данного процесса (падающий и рассеянный) необходимо поменять местами.

Чтобы вычислить дифференциальное сечение возбуждения, необходимо оценить среднюю энергию электрона в области пространственного заряда обратносмещенного p-n-перехода. Для этого нужно решить уравнение баланса этой энергии $\langle E \rangle$, которое имеет вид

$$\frac{d\langle E\rangle}{dt} = -\alpha(E)\sqrt{\frac{2\langle E\rangle}{m^*}}I - \frac{\langle E_p\rangle}{\lambda}\sqrt{\frac{2\langle E\rangle}{m^*}} + ev_dE.$$
 (2)

Первое слагаемое в правой части описывает потери энергии на ионизацию атомов матрицы (m^* — эффективная масса электрона, $\alpha(E)$ — коэффициент ударной ионизации, зависящий от напряженности поля E, I — энергия ионизации). Второе слагаемое описывает потери энергии при рассеянии электронов на продольных оптических фононах ($\langle E_p \rangle$ — средняя энергия оптических фононов, λ — средняя длина свободного пробега электрона при рассеянии на оптических фононах). Третье слагаемое определяет разогрев электронного газа электрическим полем (v_d — дрейфовая скорость электрона).

Стационарное решение уравнения (2) показывает зависимость средней энергии от напряженности поля

$$\langle E \rangle = \frac{m^* v_d^2}{2} e^2 E^2 \left(\alpha(E) I + \langle E_p \rangle / \lambda \right)^{-2}. \tag{3}$$

С другой стороны, средняя энергия электрона вычисляется по определению через функцию распределения

$$\langle E \rangle = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} E(k) f(k, \theta, \phi, E) k^{2} \sin(\theta) dk d\theta d\phi. \tag{4}$$

Здесь $f(k,\theta,\phi,E)$ — неравновесная функция распределения электронов, которая для полупроводника в электрическом поле в первом приближении имеет вид

$$f = f_0 + \frac{f_0}{k_b T_e} (\mathbf{v}, e\mathbf{E}) \tau. \tag{5}$$

Здесь **v** — скорость электрона, τ — время релаксации, k_b — постоянная Больцмана, T_e — температура электронного газа, f_0 — функция распределения Максвелла,

$$f_0 = \left(\frac{\hbar^2}{2\pi m^* k_b T_e}\right)^{3/2} \exp\left(-\frac{\hbar^2 k^2}{2m^* k_b T_e}\right).$$
 (6)

Зависимость электронной температуры от прикладываемого электрического поля можно получить, приравняв выражения (3) и (4). Оценки температуры показывают, что при обратном смещении p-n-перехода средняя энергия электронов достаточно высока, для того, чтобы воспользоваться борновским приближением для расчета дифференциального сечения возбуждения [8]. Подставив вычисленное в этом приближении выражение для $d\sigma_{\rm ex}/d\Omega$ в формулу (1), получим выражение для $d\sigma_{\rm dw}$

$$d\sigma_{\rm dw} = \frac{e^2 m^{*2}}{2\pi \hbar^4 (k\varepsilon\varepsilon_0)^2} \frac{dq}{q^3} \sum_{i=1}^{\infty} \frac{q^{2i}}{(i!)^2} \bar{M}_{i\alpha\beta}. \tag{7}$$

Здесь q — модуль переданного волнового вектора, т. е. разности волновых векторов рассеянного и падающего электронов, $M_{i\alpha\beta}$ — квадрат модуля матричного элемента мультипольного момента атома, β и α — индексы возбужденного и основного состояний атома эрбия соответственно.

Поскольку значения переданного волнового вектора сравнительно малы, в выражении (7) достаточно ограничиться двумя первыми слагаемыми, что приведет его к следующему виду:

$$d\sigma_{\rm dw} = \frac{e^2 m^{*2}}{2\pi\hbar^4 (k\varepsilon\varepsilon_0)^2} M_{1\alpha\beta} \frac{dq}{q} + \frac{e^2 m^{*2}}{8\pi\hbar^4 (k\varepsilon\varepsilon_0)^2} M_{2\alpha\beta} q dq. \tag{8}$$

Интегрирование по всем возможным значениям q дает выражение

$$\begin{split} \sigma_{\rm dw}(k) &= \frac{e^2 m^{*2}}{2\pi \hbar^4 (k\varepsilon\varepsilon_0)^2} M_{1\alpha\beta} \ln \left(\frac{q_{\rm max}}{q_{\rm min}} \right) \\ &+ \frac{e^2 m^{*2}}{16\pi \hbar^4 (k\varepsilon\varepsilon_0)^2} M_{2\alpha\beta} (q_{\rm max}^2 - q_{\rm min}^2). \end{split} \tag{9}$$

Здесь q_{max} и q_{min} — максимальное и минимальное значения q соответственно, они определяются из закона

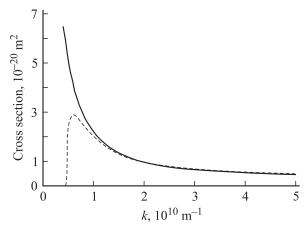


Рис. 1. Зависимость сечений возбуждения (штриховая линия) и безызлучательного девозбуждения (сплошная линия) атома эрбия от волнового вектора электрона.

сохранения энергии для системы атом-падающий электрон и имеют вид

$$q_{\text{max}} = \sqrt{k^2 + \frac{2m^* E_{\alpha\beta}}{\hbar^2}} + k,$$
 (10)

$$q_{\min} = \sqrt{k^2 + \frac{2m^* E_{\alpha\beta}}{\hbar^2}} - k. \tag{11}$$

Здесь $E_{\alpha\beta}$ — разность энергий первого возбужденного и основного состояний редкоземельного атома. Зависимости сечения возбуждения и безызлучательного девозбуждения от волнового вектора представлены на рис. 1.

В эксперименте наблюдается усредненное по k значение $\sigma_{\rm dw}$, выражение для которого определяется следующей формулой:

$$\sigma_{\rm dw} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} \sigma_{\rm dw}(k) f(k, \theta, \phi) k^{2} \sin(\theta) dk d\theta d\phi. \tag{12}$$

Полученные при интегрировании выражения (12) зависимости $\sigma_{\rm ex}$ и $\sigma_{\rm dw}$ от поля приведены на рис. 2 и 3 (интегрирование сечения возбуждения по k производится не от нуля, а от порогового значения, определяемого энергией возбуждения центра).

Рассмотрим процесс девозбуждения, при котором происходит высвечивание оптически активного центра. В этом случае электрон передает атому лишь пренебрежимо малую часть энергии, идущую на приращение кинетической энергии последнего, поэтому можно рассматривать этот процесс как переход в двухуровневой системе под действием возмущающего поля, создаваемого налетающим электроном. В таком случае для вычисления вероятности перехода можно использовать выражение для вероятности индуцированных переходов

в атоме (см., например, [9])

$$P_{\alpha\beta} = \left(\frac{2\pi}{\hbar}\right)^2 \left| E(\omega_{\alpha\beta}) M_{1\alpha\beta} \right|^2, \tag{13}$$

где $\omega_{\alpha\beta}=\frac{E_{\alpha\beta}}{\hbar}$ — частота перехода в системе, $E(\omega_{\alpha\beta})$ — Фурье-образ напряженности поля, создаваемого электроном, который имеет вид

$$E(\omega_{\alpha\beta}) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e}{4\pi\varepsilon\varepsilon_0} \exp(-i\omega_{\alpha\beta}t) \int_{V} \frac{|\Psi|^2}{r^2} \cos\theta dV dt.$$
(14)

Здесь Ψ — волновая функция рассеянного электрона, θ — угол между вектором дипольного момента и вектором напряженности поля. Интегрирование во внутреннем интеграле ведется по всему пространству.

Чтобы получить выражение для сечения излучательного девозбуждения $\sigma_{\rm de}$, нужно учеть упругий характер рассеяния электрона, а также то, что в данном случае в электронном газе достаточно горячих носителей. Следовательно, можно воспользоваться квазиклассическим

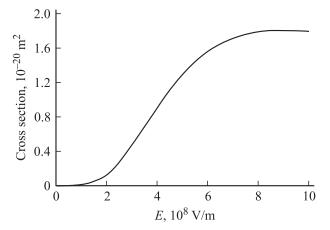


Рис. 2. Зависимость сечения возбуждения атома эрбия от напряженности электрического поля.

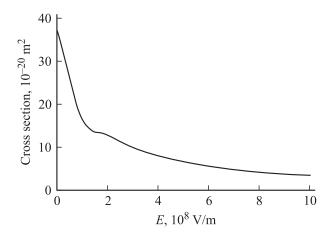


Рис. 3. Зависимость сечения безызлучательного девозбуждения атома эрбия от напряженности поля.

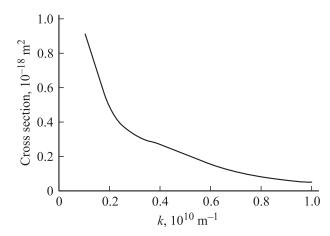


Рис. 4. Зависимость сечения излучательного девозбуждения атома эрбия от волнового вектора электрона.

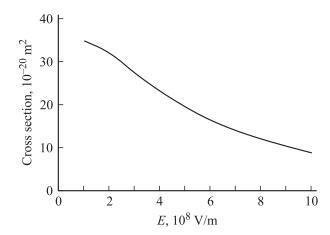


Рис. 5. Зависимость сечения излучательного девозбуждения атома эрбия от напряженности поля.

выражением для сечения упругого рассеяния (см. [9]) и теоремой об умножении вероятностей. Это приведет к выражению для полного сечения, которое будет представлять собой произведение соответствующего сечения упругого рассеняния и вероятности перехода. Выражение для полученного сечения имеет вид

$$\sigma_{\rm de} = \left(\frac{m^* a^2 Z e^2}{\varepsilon \varepsilon_0 \hbar^2}\right) \frac{1}{3\pi} \frac{1}{\xi} \left[7 - \frac{7 + 9\xi + 3\xi^2}{(1 + \xi)^3}\right] P_{\alpha\beta}, \quad (15)$$

где $\xi = (2ka)^2$, a — размер центра.

Зависимость данного сечения от поля получается аналогично предыдущему случаю. Результаты вычислений представлены на рис. 4 и 5.

3. Заключение

Таким образом, показано, что процессы девозбуждения играют важную роль в динамике концентрации возбужденных центров из-за сравнительно больших величин соответствующих сечений, в силу чего доля таких

центров в структуре при подаче на нее обратного смещения предположительно остается низкой. Это указывает на необходимость поиска путей уменьшения влияния данных процессов.

Список литературы

- [1] Н.А. Соболев. ФТП 29, 1153 (1995).
- [2] М.С. Бреслер, Т. Грегоркевич, О.Б. Гусев, Н.А. Соболев, Е.И. Теруков, И.Н. Яссиевич, Б.П. Захарченя. ФТТ **41**, *5*, 851 (1999).
- [3] В.Ф. Мастеров, Ф.С. Насрединов, П.П. Серегин, В.Х. Кудоярова, А.Н. Кузнецов, Е.И. Теруков. Письма в ЖТФ 22, 23, 25 (1996).
- [4] В.Ф. Мастеров, Ф.С. Насрединов, П.П. Серегин, Е.И. Теруков, М.М. Мездрогина. ФТП 32, 6, 708 (1998).
- [5] V.F. Masterov, L.G. Gerchikov. ΦΤΠ **33**, *6*, 664 (1999).
- [6] I.N. Yassievich, L.C. Kimerling. Semicond. Sci. Technol. 8, 718 (1993).
- [7] С.А. Кривелевич, М.И. Маковийчук, Р.В. Селюков. Тез. докл. Шестой Рос. конф. по физике полупроводников. СПб (2003). С. 207.
- [8] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1979).
- [9] Д.И. Блохинцев. Основы квантовой механики. Наука, М. (1983).