Правило Урбаха в стеклах PbO-SiO₂

© И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов, Ю.В. Щапова

Уральский государственный технический университет, 620002 Екатеринбург, Россия E-mail: wia@dpt.ustu.ru

(Поступила в Редакцию 6 мая 1999 г. В окончательной редакции 8 июля 1999 г.)

> Проанализировано поведение оптических спектров свинцовосиликатных стекол с переменным содержанием свинца вблизи УФ края поглощения в интервале температур 80–470 К. Для интерпретации экспериментальных спектральных зависимостей предложена обобщенная формулировка модифицированного правила Урбаха, применимая для стеклообразных материалов в широком диапазоне температур. В рамках используемого подхода рассчитаны значения эффективной энергии фононов, ответственных за температурный сдвиг урбаховского края. Показано, что спектральные и температурные параметры модифицированного правила Урбаха являются структурно-чувствительными, а их концентрационное поведение отражает изменение типа ближнего порядка в стеклообразной матрице.

Важнейшим фактором, определяющим комплекс оптических, радиционных и эмиссионных характеристик стеклообразных материалов, является поведение края собственного поглощения в широком диапазоне температур (начиная от криогенных вплоть до температуры стеклования T_{g} [1]. В большинстве аморфных сред спектры оптического поглощения, измеренные в области границы пропускания, характеризуются наличием протяженного экспоненциального хвоста, спектрально-температурное поведение которого подчиняется так называемому "стеклообразному" или модифицированному правилу Урбаха (МПУ) [2,3]. В соответствии с указанным правилом наклон спектральных характеристик стекла в отличие от кристаллов [4] с ростом температуры не меняется и имеет место их параллельный сдвиг в область более низких энергий [3].

Сегодня общепризнано [2,3,5-7], что формирование урбаховского хвоста в кристаллических и некристаллических материалах так или иначе связано с присутствующим в системе общим структурным беспорядком. Считается, что реализация МПУ отражает доминирующую роль статического разупорядочения в аморфной матрице, однако наличие температурного сдвига края поглощения указывает на определенное влияние теплового (динамического) беспорядка в стеклах [8]. Существует достаточное количество работ по изучению температурного поведения края оптического поглощения в оксидных стеклах [9–12]. В работе [13] с использованием представления об эквивалентности статического и динамического типов беспорядка в атомной решетке было показано, что "кристаллическая" и "стеклообразная" модификации правила Урбаха являются предельными случаями общей экспоненциальной зависимости коэффициента поглощения в области УФ края.

Вместе с тем следует признать, что с использованием традиционной записи МПУ [9] невозможно выделить, а тем более интерпретировать и количественно оценить роль динамических эффектов. При этом область применимости указанного формализма МПУ ограничивается только высокотемпературным интервалом, где наблюдается линейная зависимость положения края поглощения от температуры [13].

Настоящая работа посвящена исследованию закономерностей поведения края фундаментального поглощения в бинарных свинцово-силикатных стеклах переменого состава. Система PbO–SiO₂, на наш взгляд, является весьма перспективной для изучения эффектов беспорядка, поскольку имеет широкую область стеклообразования, что позволяет при варьировании концентрации компонентов плавно изменять атомную структуру матрицы, включая инверсию ближнего порядка [10,14,15]. Кроме того, УФ-край свинцово-силикатных матриц не искажен эффектами несобственной природы, как, например, в щелочно-силикатных стеклах, где подобные исследования затруднены влиянием поглощения микропримеси железа [11,16].

Основная цель работы состоит в физической интерпретации параметров МПУ на основе учета вклада динамического беспорядка применительно к статически разупорядоченным стеклообразным материалам в системе PbO–SiO₂.

1. Эксперимент

Исследуемые образцы представляли собой гомогенные, рентгеноаморфные, визуально прозрачные стекла PbO–SiO₂, синтезированные из материалов особой чистоты. Содержание PbO варьировалось от 20 mol.% до 80 mol.%. В области 45–50 mol.% PbO для исследуемых стекол наблюдается трансформация структуры: переход от силикатной стеклообразующей сетки к свинцовокислородной, происходящий с изменением типа ближнего порядка [15,17]. Фактически исследовались образцы двух стеклообразующих систем: низкосвинцовые стекла (силикатная матрица со свинцовым модификатором); высокосвинцовые стекла (свинцово-кислородная сетка с кремниевым модификатором). По данным химического анализа, состав двухкомпонентных образцов соответствовал составу по синтезу с точностью до 1 mol.%.

В окончательном виде образцы представляли собой полированные плоскопараллельные пластины толщиной 0.4–0.6 mm с поверхностями оптического качества, обеспечивающего измерение коэффициента поглощения в области экспоненциального хвоста. Все измерения выполнялись на спектрофотометре "Spekord-M40" с применением вакуумного криостата в интервале температур 80–470 К.

Измеренные спектры собственного поглощения для стеклообразных силикатов свинца приведены на рис. 1: низкосвинцовая область (20 mol.%); область инверсии (50 mol.%); высокосвинцовая область (80 mol.%). Полученные зависимости коэффициента поглощения α от энергии фотонов $h\nu$ и температуры T для всех концентраций подчиняются "стеклообразному" правилу Урбаха [9,10]

$$\alpha(h\nu,T) = \alpha_g \exp\left(\frac{h\nu}{E_0} + \frac{T}{T_0}\right),\tag{1}$$

где α_g — константа, T_0 — характеристическая температура, получаемая из эксперимента, $1/E_0 = \partial \ln \alpha / \partial h \nu$ — логарифмический наклон спектральной характеристики. Конкретные величины E_0 , оцениваемые для одной и той же спектральной кривой, могут незначительно отличаться в зависимости от области значений α , на которой функция $\alpha(h\nu)$ аппроксимируется экспонентой [18].

Для всех образцов значение параметра E_0 оценивалось в диапазоне $\alpha = 40-120 \,\mathrm{cm}^{-1}$. Спектры поглощения для всех исследованных образцов при комнатной температуре ($T = 290 \,\mathrm{K}$) представлены на рис. 2. Видно, что с увеличением содержания оксида свинца происходит смещение края поглощения в длинноволновую область. Значения E_0 при $T = 290 \,\mathrm{K}$ для разных концентраций свинца приведены в таблице.

Параметры модифицированного правила Урбаха в стеклах PbO–SiO₂

Содержание PbO, mol.%	E_0, eV	<i>T</i> ₀ , K	β , $\times 10^{-4} \text{eV} \cdot \text{K}^{-1}$	<i>T'</i> , K	cm^{-1}	A, eV
20	0.119	234	5.08	250	304	0.222
40	0.095	143	6.65	230	238	0.228
45	0.097	204	4.76	200	174	0.199
50	0.117	234	5.00	210	196	0.141
55	0.136	261	5.21	210	236	0.177
60	0.137	245	5.59	250	225	0.181
80	0.116	182	6.38	270	249	0.229

С ростом температуры спектры поглощения смещаются в длинноволновую область без изменения параметра наклона E_0 (рис. 1). На рис. 3 приведены температурные зависимости параметра E_0 для трех образцов. Показанные на рис. 3 пределы разброса составляют 2%

up 100 - 149 K - 195 K - 290 K - 369 K - 369 K - 471 K 80PbO-20SiO_ 50PbO-50SiO_ 20PbO-80SiO_ 2.4 2.8 3.2 3.6 Photon Energy, eV

Рис. 1. Влияние температуры на спектры оптического поглощения стекол. Штриховыми линиями показан наклон соответствующих урбаховских хвостов.

Рис. 2. Спектры оптического поглощения стекол при 290 К. Под кривыми указано содержание PbO в mol.%.

Рис. 3. Температурные зависимости спектрального параметра *E*₀.

45 Photon Energy, eV 50 55 3.0 60 2.8 80 100 200 Ó 300 400 500 T. K

Рис. 4. Температурные зависимости положения края оптического поглощения для всех образцов. Точки — эксперимент; сплошные линии — аппроксимация по (5). Рядом с кривыми указано соответствующее содержание PbO в mol.%.

от измеренных значений наклонов спектральных характеристик. Видно, что для исследуемого диапазона температур 80–470 К параметры E_0 остаются постоянными в указанных пределах. Как известно [3], такое поведение характерно для большинства неупорядоченных структур и демонстрирует доминирующую роль статического разупорядочения, при этом предполагается, что величина Е0 количественно характеризует степень беспорядка в системе.

Температурный член в показателе экспоненты выражения (1) отражает линейное смещение края поглощения по шкале энергий. Зависимость $h\nu(T)$ кроме линейного участка характеризуется также существенно нелинейной температурной областью при T < T' (рис. 4), когда выражение (1) уже не описывает результаты эксперимента. Положение границы Т' является характеристикой стеклообразного материала и определяется графически. Полученные таким образом значения Т' для всех образцов представлены в таблице. По наклону линейной части можно определить значение параметра Т₀, который также является характеристикой образца в температурной части МПУ (1) и, следовательно, тоже должен быть чувствителен к степени статического беспорядка.

Следует отметить, что в условиях параллельного сдвига края поглощения вид функции $h\nu(T)$ полностью совпадает с температурным изменением ширины оптической щели материала $E_g(T)$ [8]

$$h\nu(0) - h\nu(T) = E_g(0) - E_g(T).$$
 (2)

Форма экспериментально наблюдаемой зависимости (рис. 4) является типичной для большинства не только аморфных, но и кристаллических систем [7,19]. Данный факт указывает на общность механизма сдвига края оптического поглощения в кристаллах и стеклах и заметную роль в этом механизме теплового (фононного) беспорядка. Вместе с тем выражение (1) не содержит в явном виде физические величины, характеризующие динамическую составляющую общего атомного беспорядка. Другими словами, МПУ (1) не описывает зависимости $h\nu(T)$ в области низких температур и не позволяет оценить энергетические параметры динамического беспорядка (в частности энергию колебаний атомов) из экспериментальных кривых, явным образом им обусловленных.

Таким образом, используя запись (1), на данном этапе мы оценили параметр Е₀ спектральной части МПУ, который в неупорядоченных материалах связан со статическим разупорядочением атомов. Однако физическое содержание температурных параметров T_0 и T' остается до конца неясным и поэтому требует специального рассмотрения.

Теория 2.

Экспоненциальная зависимость коэффициента поглощения в области УФ края пропускания может быть записана в общем виде [13,20]

$$\alpha(h\nu, T) = \alpha_0 \exp\left(\frac{h\nu - E_g(T)}{E_0(T, X)}\right),\tag{3}$$

где α_0 — постоянная. Функция $E_0(T, X)$ в выражении (3) является мерой присутствующего в системе беспорядка и в общем случае отражает вклад динамического (тепловые фононы) и статического ("замороженные" фононы) разупорядочения через смещения и атомов из их положения равновесия [2,21]

$$E_0(T,X) = K(u_T^2 + u_X^2),$$
(4)

где X — геометрический параметр материала [2], используемый для характеристики статического беспорядка; $\langle u^2 \rangle_T$ — среднеквадратичное тепловое смещение; $\langle u^2 \rangle_X$ — среднеквадратичное смещение атомов, обусловленное "замороженными" фононами. Коэффициент К здесь имеет смысл константы деформационного потенциала второго порядка [21].

Для функции ширины запрещенной зоны $E_g(T)$ в пределе высоких температур справедливо линейное приближение [3] с температурным коэффициентом $\beta = dE_g/dT$, который обычно определяют по наклону экспериментальной зависимости $E_g(T)$.

В нашей работе [13] "кристаллическая" и "стеклообразная" (1) модификации правила Урбаха получены аналитически из выражения (3) на основе линейного соотношения для температурной зависимости E_g и представления (4) об эквивалентности статического и динамического типов беспорядка в атомной решетке. "Кристаллический" вариант реализуется в условиях учета преимущественно теплового разупорядочения

3.8

решетки, т.е. $\langle u^2 \rangle_T \gg \langle u^2 \rangle_X$ и $E_0(T,X) \sim kT$. Для систем с доминирующим статическим беспорядком, когда $\langle u^2 \rangle_X \gg \langle u^2 \rangle_T$ и функция $E_0(T,X) \equiv E_0$ является температурно-независимой, характерна "стеклообразная" модификация (1).

В области низких температур $E_g(T)$ является существенно нелинейной функцией и выражение (1) оказывается неприемлемым для описания температурного сдвига края оптического поглощения. Очевидно, что при таком подходе температурная граница применимости (1) определяется параметрами модели, которая используется для описания $E_g(T)$.

Температурная зависимость ширины запрещенной зоны, справедливая во всем диапазоне, может быть записана в виде [22]

$$E_g(T) = E_g(0) - A\langle n \rangle, \tag{5}$$

где $E_g(0)$ — ширина запрещенной зоны при нулевой температуре; A — параметр Фэна, зависящий от микроскопических свойств материала [23]; $\langle n \rangle = [\exp(\hbar \omega / kT) - 1]^{-1}$ — фактор Бозе–Эйнштейна для фононов с энергией $\hbar \omega$.

Выражение (5) учитывает в явном виде только фононный вклад в $E_g(T)$, который при низких температурах является преобладающим [24]. Более того, вклад от теплового расширения решетки в общее температурное изменение ширины запрещенной зоны для ряда материалов не превышает величину 20% и в первом приближении им можно пренебречь [24]. Отметим, что при больших температурах вклад теплового расширения в величину сдвига энергетических уровней также будет пропорционален $\langle n \rangle$ [24]. В этом случае значение параметра A, получаемое в расчетах, учтиывает как внутренний (электрон-фононное взаимодействие), так и внешний (термическое расширение) вклады в зависимость $E_g(T)$.

Таким образом, подставляя (5) в выражение (3), получаем "стеклообразную" модификацию правил Урбаха, справедливую во всем температурном диапазоне, в следующем виде:

$$\alpha(h\omega, T) = \alpha_g \exp\left(\frac{h\nu + A\langle n \rangle}{E_0}\right). \tag{6}$$

При достаточно высоких температурах, когда $kT \gg \hbar \omega$, второе слагаемое в числителе показателя экспоненты пропорционально температуре: $\langle n \rangle = kT/\hbar \omega$. В этом случае (6) принимает вид выражения (1). Соотношения для характеристического параметра T_0 и температурного коэффициента β записываются при этом следующим образом

$$T_0 = E_0 \frac{\hbar\omega}{kA}, \quad \beta = A \frac{k}{\hbar\omega}.$$
 (7)

Все рассуждения, приведенные в настоящем разделе, в значительной степени опираются на справедливость выражения Фэна (5) для случая неупорядоченных структур. Применимость (5) для описания $E_g(T)$ как в кристаллических, так и аморфных материалах, уже отмечалась в ряде работ [7,8,19].

Таким образом, полученная обобщенная запись МПУ (6) применима для анализа экспериментальных зависимостей $\alpha(h\nu, T)$ стекол в широком температурном диапазоне и позволяет в явном виде оценить параметры статического и динамического беспорядков из спектров оптического поглощения.

3. Обсуждение

Одним из важнейших следствий позиционного разупорядочения атомов для некристаллических материалов является локализация электронных состояний в хвостах энергетических зон. Параметр E_0 спектральной части МПУ является количественной характеристикой доминирующего статического беспорядка в структуре исследуемых стекол и отражает протяженность зонных хвостов плотности электронных состояний [3,25,26].

Из таблицы видно, что параметр Е0 для всех образцов лежит в диапазоне 0.095-0.140 eV, что говорит о достаточно близкой степени атомного беспорядка в изучаемых стеклах. Этот факт согласуется с данными работ [6,13], в которых показано, что параметр наклона урбаховского края для самых разных стеклообразующих систем имеет одинаковый порядок величины 0.05-0.25 eV. При этом величина Е0 остается постоянной при температурном сдвиге спектральных характеристик и в общем случае определяется наклоном наиболее протяженного хвоста [5,18]. Согласно модели Абе-Тойозавы [6], характеристическая длина зонного хвоста плотности состояний связана с флуктуациями атомного потенциала. Заметим, что наиболее упорядоченными, с данной точки зрения, являются стекла, содержащие 40 и 45 mol.% PbO, для которых $E_0 = 0.095$ и 0.097 eV соответственно. Концентрационное поведение параметра Е0 в области 45-50 mol.% PbO (см. таблицу) отслеживает трансформацию ближнего порядка (переход от низко-свинцовых к высоко-свинцовым стеклам) и соответствующее изменение степени статического разупорядочения [15].

Предложенная в разделе 2 обобщенная запись МПУ позволяет оценить параметры динамического беспорядка, определяющего термический сдвиг края поглощения, в частности эффективную энергию фононов. На рис. 4 приведены зависимости $h\nu(T)$ для всех образцов. Точками показаны экспериментальные значения энергии фотонов $h\nu$, взятые при коэффициенте поглощения $lg(\alpha) = 1.8$ (на рис. 2 отмечен штриховой линией) и соответствующие различным температурам измерений. Сплошными линиями на рис. 4 показаны результаты аппроксимаций экспериментальных зависимостей с использованием выражения (5). Величины $E_g(0)$, A и ω варьировали как температурно-независимые. Полученные значения этих переменных для всех концентраций приведены в таблице.

Рис. 5. Концентрационные зависимости энергии эффективных колебаний и ширины оптической щели. I — частота фононов, $2 - E_g$ при $\alpha = 100 \text{ cm}^{-1}$ [17]; $3 - E_g(0)$. Вертикальная штрих-пунктирная линия — область инверсии ближнего порядка стекла.

Из рис. 4 видно, что применение выражения (5) хорошо воспроизводит экспериментальную температурную зависимость положения края поглощения. Полученные при аппроксимации значения фононных частот для всех образцов приведены в таблице. Сравнение результатов расчета с данными экспериментов по комбинационному рассеянию света [27-29] показывает, что найденные величины, с одной стороны, несколько превосходят значения частот, обусловленных колебательным движением атомов свинца, 95 и 140 cm⁻¹; и с другой стороны, ниже деформационных и оптических колебаний силикатной сетки (подрешетки стеклообразователя), которые лежат в областях 400-500 и 880-1200 ст⁻¹ [27,28]. Поскольку выражение (5) получено в рамках однофононного приближения [22], то извлекаемая из него энергия фонона отражает некую эффективную величину, в которой учитывается вклад от всех колебательных состояний в системе. С этой точки зрения полученные частоты 170-300 ст⁻¹ имеют промежуточные значения и характеризуют эффективные колебательные состояния.

Значения параметров T_0 и β температурной части МПУ, характеризующие область линейной температурной зависимости $h\nu(T)$, были рассчитаны на основании выражений (7) (см. таблицу). Фиктивная граница T' определялась графически на основании зависимостей, приведенных на рис. 4. Отметим, что значения T' весьма условны. Строго говоря, зависимость $E_g(T)$ (5) нигде не является линейной, а величины коэффициента β и параметра T_0 носят асимптотический характер. Подчеркнем, что все вышеуказанные величины характеризуют динамическую составляющую общего структурного беспорядка.

Соотношение статического и динамического вкладов в общее структурное разупорядочение в значительной степени определяется типом ближнего порядка. При анализе параметра E_0 мы уже отмечали, что наблюдаемые количественные изменения связаны с качественным изменением природы подрешетки стеклообразователя в области 45–50 mol.% PbO. Аналогичную взаимосвязь можно проследить и для динамических энергетических параметров МПУ.

На рис. 5 представлены концентрационные зависимости эффективной энергии фононов и оптической ширины щели при нулевой температуре $E_g(0)$. Для сравнения приведены также независимые экспериментальные результаты для энергии края оптического поглощения в свинцово-силикатных стеклах при $\alpha = 100 \,\mathrm{cm}^{-1}$ [17]. Видно, что все концентрационные зависимости имеют излом в области концентраций 45-50 mol.% PbO, соответствующей изменению типа ближнего порядка. Более того, концентрационные зависимости всех величин (кроме T_0), приведенных в таблице, также имеют минимальное значение при содержании 45 mol.% РbO. Следовательно, можно говорить о том, что характеристические параметры МПУ оказываются весьма чувствительными к трансформации ближнего порядка. Другими словами, инверсия ближнего порядка, заметно влияющая на многие физические свойства стекла [15,17], отражается в том числе и на характеристиках динамического беспорядка.

Таким образом, в настоящей работе на основе представления об эквивалентности статической и динамической составляющих структурного беспорядка дана обобщенная формулировка модифицированного правила Урбаха, описывающая спектрально-температурное поведение статически разупорядоченных материалов. Предложенная запись (6) в явном виде содержит параметры, количественно характеризующие оба типа беспорядка, и в пределе высоких температур ($kT \gg \hbar\omega$) может быть приведена к известной форме (1). В рамках рассмотренного формализма проанализировано поведение спектров оптического поглощения стекол системы PbO-SiO₂ в диапазоне температур 80-470 К. Рассчитаны частоты эффективных фононов $(170-300 \text{ cm}^{-1})$, ответственных за термический сдвиг урбаховского края. Параметры предложенной записи (6) правила Урбаха являются структурно-чувствительными, а их концентрационные зависимости отражают инверсию ближнего порядка стекла.

Авторы благодарят А.А. Маслакова за помощь в проведении эксперимента.

Список литературы

- Gan Fuxi. Optical and spectroscopic properties of glass. Springer-Verlag, Berlin (1992). 283 p.
- [2] J. Tauc. Mater. Res. Bull. 5, 721 (1970).
- [3] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). 652 с.
- [4] Б.Л. Гельмонт, В.И. Перель, И.Н. Яссиевич. ФТТ 25, 3, 727 (1983).
- [5] Ш. Абе, Ю. Тойозава. Плотность состояний электронов и край оптического поглощения в аморфных полупроводниках. В кн.: Аморфные полупроводники и приборы на их основе / Под ред. Й. Хамакавы. Металлургия, М. (1986). 376 с.

- [6] Я.Г. Клява. ФТТ 27, 5, 1350 (1985).
- [7] G.D. Cody. In: Hydrogenated Amorphous Silicon. Part B / Ed. by J. Pankove. Academic Press Inc., N.Y. (1984). P. 11.
- [8] J.N. Zakis, H. Fritzsche. Phys. Stat. Sol. (b) 64, 123 (1974).
- [9] Л.Б. Глебов, М.Н. Толстой. Физика и химия стекла 1, 3, 239 (1975).
- [10] A.N. Trukhin. J. Non-Cryst. Solids 189, 1 (1995).
- [11] В.И. Арбузов, А.Ф. Зацепин, В.С. Кортов, М.Н. Толстой,
 В.В. Тюков. Физика и химия стекла 20, 6, 689 (1994).
- [12] I.A. Weinstein, A.F. Zatsepin, Yu.V. Schapova. Physica B263– 264, 1–4, 167 (1999).
- [13] И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов. Физика и химия стекла 25, 1, 70 (1999).
- [14] Л.Б. Глебов, А.Г. Плюхин, Э.Л. Раабен, М.Н. Толстой, А.Н. Трухин. Физика и химия стекла 16, 2, 245 (1990).
- [15] А.Ф. Зацепин, В.С. Кортов, Ю.В. Щапова. Радиотехника и электроника 37, 2, 326 (1992).
- [16] Л.Б. Глебов, В.Г. Докучаев, М.А. Петров, Г.Т. Петровский. Физика и химия стекла **16**, *1*, 39 (1990).
- [17] А.М. Тютиков, Н.В. Лобанова, М.Н. Тоисеева, В.Н. Полухин, Н.В. Королев, В.Е. Яковлев. Физика и химия стекла 5, 5, 628 (1979).
- [18] S.K. O'Leary, S.R. Johnson, P.K. Lim. J. Appl. Phys. 82, 3334 (1997).
- [19] И.А. Вайнштейн, А.Ф. Зацепин, В.С. Кортов. ФТТ **41**, *6*, 994 (1999).
- [20] G.D. Cody. J. Non-Cryst. Solids 141, 3 (1992).
- [21] G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein. Phys. Rev. Lett. 47, 20, 1480 (1981).
- [22] H.Y. Fan. Phys. Rev. 82, 6, 900 (1951).
- [23] Г. Фэн. Фотон-электронное взаимодействие в кристаллах в отсутствие внешних полей. Мир, М. (1969). 127 с.
- [24] T. Skettrup. Phys. Rev. **B18**, *6*, 2622 (1978).
- [25] А.Ф. Зацепин, В.С. Кортов, Ю.В. Щапова. ФТТ 39, 8, 1366 (1997).
- [26] V.A. Gubanov, A.F. Zatsepin, V.S. Kortov, D.L. Novikov, S.P. Freidman, G.B. Cherlov, U.V. Shchapova. J. Non-Cryst. Solids 127, 259 (1991).
- [27] E.M. Rabinovich. J. Mater. Sci. 11, 925 (1976).
- [28] B. Piriou, H. Arashi. High Temp. Sci. 13, 299 (1980).
- [29] В.О. Кабанов, Т.М. Подольская, О.В. Януш. Физика и химия стекла 22, 1, 25 (1996).