Магнитное упорядочение в гранулированной системе

© Ю.И. Горобец, Ю.И. Джежеря*, А.Ф. Кравец

Институт магнетизма Академии наук Украины, 252680 Киев, Украина *Киевский политехнический институт, 252056 Киев, Украина

E-mail: kravets@imag.kiev.ua

(Поступила в окончательном виде 21 июня 1999 г.)

В рамках феноменологического подхода для гранулированных материалов, содержащих подсистему ферромагнитных гранул, рассмотрены условия формирования различных магнитных структур с ферромагнитным и антиферромагнитным упорядочением. Предполагается, что магнитная структура формируется под действием магнитостатического поля в комплексе с обменным взаимодействием между электронами проводимости и магнитными ионами.

Открытие эффекта гигантского магнитосопротивления [1] в многослойных пленках с последовательно чередующимися слоями магнитного и немагнитного металлов и в гранулированных пленках (ГП) с ферромагнитными включениями (гранулами), диспергированными в немагнитной матрице [2,3], открыло широкие перспективы для создания нового класса приборов микромагнитной электроники и стимулировало комплексные исследования физических свойств указанных структур.

Степень регулярности в расположении гранул, их форма, концентрация и размеры существенным образом влияют на магнитные характеристики ГП, такие как статическая и динамическая восприимчивости, эффект гигантского магнитосопротивления, температурные фазовые переходы и т. д. Установлено, что верхняя граница полей насыщения различных эффектов в таких структурах определяется, в частности, размерами и формой гранул. При этом максимальной восприимчивостью обладают образцы с крупными сферическими гранулами, а также тонкие гранулы дисковой формы, которые достаточно легко перемагничиваются в своей плоскости при условии слабой магнитокристаллической анизотропии материала феррогранул [4]. Расположение магнитных включений в ГП, полученных обычным способом, как правило, нерегулярно. Однако имеются данные по созданию с помощью литографии регулярных двумерных магнитных решеток [5,6].

В данной работе рассмотрены условия формирования различных структур с ферромагнитным (FM), антиферромагнитным (AFM) и парамагнитным (PM) упорядочениями магнитных моментов гранул в ГП. Для описания обменного взаимодействия развита феноменологическая теория, на основании которой определены условия установления FM, AFM и PM состояния в гранулированной и квазигранулированной пленках (последняя получается путем отжига многослойной магнитной пленки), а также построена температурная фазовая диаграмма для таких систем. Как известно, многослойные магнитные пленки в процессе отжига превращаются в квазигранулярные структуры с магнитными включениями дисковой формы, плоскость которых параллельна плоскости пленки [7,8]. Исследуем магнитные свойства таких систем, полагая, что ферромагнитные включения имеют форму диска со следующим соотношением параметров: $L \ll d$ (где L, d — соответственно толщина и поперечный размер феррогранул). Полагаем, что плоскость дисковых феррогранул (в дальнейшем просто гранул) параллельна плоскости *YOX*.

Очевидно, что при наномасштабных размерах гранулы находятся в монодоменном состоянии. Благодаря анизотропии формы собственная магнитостатическая энергия тонких дисковых гранул равна $E_i^a = 2\pi M_i^{z^2}/v_i$. Поэтому их намагниченность ориентирована ортогонально оси *OZ* и лежит в плоскости пленки (**M**_i, $v_i = \pi d_i^2 L_i/4$ — соответственно магнитный момент и объем *i*-й гранулы).

Как показывают расчеты, для решеток из тонких цилиндрических гранул с прямоугольной ячейкой при учете магнитостатического взаимодействия энергетически выгодным является формирование магнитных нитей, магнитные моменты в которых выстраиваются в виде цепочек так, что намагниченности соседних цепочек направлены в противоположные стороны (рис. 1). Цепочки магнитных гранул, изображенных на этом рисунке, напоминают ферромагнитные домены. Данная структура характеризуется отсутствием результирующего магнитного момента и наличием двух подсистем, намагниченных в противоположные стороны. Поэтому в дальнейшем она будет классифицироваться как обладающая AFM порядком. Анализ показывает, что магнитостатическая энергия системы в таком состоянии ниже энергии при ферромагнитном упорядочении.

Рис. 1. Магнитное упорядочение двумерной решетки цилиндрических магнитных гранул.

Если бы магнитостатика была единственным взаимодействием между гранулами, то, очевидно, в системе реализовалось бы распределение, изображенное на рис. 1. Однако исследования [9,10] показали, что между гранулами, находящимися даже в непроводящей матрице (например, Co–Al–O) в случаях плотного их расположения возникает обменное взаимодействие, приводящее к установлению магнитного порядка и появлению эффектов гигантского магнитосопротивления в результате спинзависимого туннелирования электронов проводимости.

При изучении магнитных свойств системы под намагниченностью гранул \mathbf{M}_i/v_i условимся подразумевать вклад магнитных ионов, обусловленный электронами внутренних оболочек, которые хорошо локализованы в магнитных атомах. При этом участие этих электронов в процессах переноса незначительно. Под матрицей подразумевается подсистема электронов проводимости, заполняющая все межионное пространство исследуемой системы. Намагниченность матрицы $\mathbf{m}(\mathbf{r})$ определяется поляризацией электронов проводимости материала.

Для описания магнитной энергии матрицы воспользуемся феноменологическим подходом, основывающимся на применении в качестве параметра порядка функции спиновой плотности [11]

$$\psi(\mathbf{r}) = \begin{pmatrix} \psi_1(\mathbf{r}) \\ \psi_2(\mathbf{r}) \end{pmatrix}.$$
 (1)

Намагниченность матрицы выражается через функции $\psi(\mathbf{r})$ посредством известных соотношений

$$m_{\alpha}(\mathbf{r}) = \mu_{\rm B} \psi^+ \hat{\boldsymbol{\sigma}}_{\alpha} \psi, \qquad (2)$$

где $\hat{\boldsymbol{\sigma}}_{\alpha}$ — матрицы Паули, μ_{B} — магнетон Бора.

Представим магнитную энергию пленки с гранулами эллипсоидной формы в виде суммы

$$E = E_M + E_\psi + E_{M\psi}, \qquad (3)$$

где

$$E_M = -\frac{1}{2} \sum_{i \neq j} J^{\alpha\beta}(\mathbf{R}_{ij}) M_i^{\alpha} M_j^{\beta} + 2\pi \sum_i (N_{\alpha} M_i^{\alpha^2} / v_i) \quad (4)$$

— магнитостатическая энергия гранул,

$$J^{\alpha\beta}(\mathbf{R}_{ij}) = \frac{1}{v_i v_j} \times \int_{v_i} d\mathbf{r} \int_{v_j} d\mathbf{r}' \left(\frac{3(x_\alpha - x'_\alpha)(x_\beta - x'_\beta) - (\mathbf{r} - \mathbf{r}')\delta_{\alpha\beta}}{|\mathbf{r} - \mathbf{r}'|^5} \right),$$

где *i*, *j* — номера феррогранул, n_{α} — размагничивающие коэффициенты гранулы, $\alpha, \beta = x, y, z$, \mathbf{R}_{ij} — вектор, соединяющий центры гранул (здесь и в дальнейшем по дважды повторящимся индексам α, β проводится суммирование), \mathbf{M}_i — магнитный момент гранулы, компоненты

которого в сферической системе координат с полярной осью *ОZ* имеют вид

$$\mathbf{M}_i = M_i(\cos\varphi_i\sin\theta_i,\cos\varphi_i\sin\theta_i,\cos\theta_i).$$

Первое слагаемое в (4) описывает обменную, а второе — собственную магнитодипольные энергии системы феррогранул,

$$E_{M\psi} = -J\mu_{\rm B} \int d\mathbf{r}(\psi^{+}\hat{\sigma}_{\alpha}\psi) \sum_{i} \Theta_{i}(\mathbf{r})(M_{i}^{\alpha}/v_{i}) \qquad (5)$$

— энергия обменного взаимодействия между намагниченностью электронов проводимости и магнитным материалом гранул, J — постоянная обменного взаимодействия. Функция $\Theta_i(\mathbf{r})$, введенная в рассмотрение в (5), определяется следующим образом:

$$\Theta_i(\mathbf{r}) = \begin{cases} 1, & \mathbf{r} \in v_i, \\ 0, & \mathbf{r} \notin v_i. \end{cases}$$

Значение E_{ψ} , соответствующее магнитной энергии матрицы, представим в виде

$$E_{\psi} = \int d\mathbf{r} \{ A \nabla \psi^{+} \nabla \psi + (I/2) \mu_{\rm B}^{2} (\psi^{+} \hat{\boldsymbol{\sigma}} \psi)^{2} \}, \qquad (6)$$

где *А*, *I* — некоторые феноменологические параметры.

Второе слагаемое в (6) отражает увеличение энергии немагнитной матрицы при поляризации электронов проводимости. Первое слагаемое в феноменологической теории традиционно описывает изменение энергии при пространственных модуляциях параметра порядка.

Слагаемые, описывающие вклады электронов проводимости в магнитостатическую энергию системы, в силу малого значения их намагниченности исключены из рассмотрения для упрощения расчетов.

Будем рассматривать систему с малой концентрацией магнитных включений. При этом на одну магнитную гранулу в среднем приходится объем $a^3 = V/N \gg v_i$ (где V — объем системы, N — количество гранул). Величину a, таким образом, можно рассматривать в качестве характерного масштаба неоднородности в расположении гранул.

В результате варьирования энергии системы (1) по ψ^+ получим уравнение для функции спиновой плотности

$$-\left(\frac{1}{a}\right)^{2} \nabla^{*2} \psi = \frac{1}{m_{0}} \left(\sum_{i} \Theta_{i}(\mathbf{r}) \frac{\mathbf{M}_{i}}{v_{i}} - \frac{I}{J} \mu_{\mathrm{B}}(\psi^{+} \hat{\boldsymbol{\sigma}} \psi)\right) \hat{\boldsymbol{\sigma}} \psi, \qquad (7)$$

где $\nabla^{*2} = a^2 \nabla^2$ — оператор Лапласа в безразмерных переменных, $l = \sqrt{A/J\mu_{\rm B}m_0}$ — характерная длина магнитного взаимодействия, $m_0 = M_i/v_i$ — намагниченность материала гранулы (в рамках данного исследования есть постоянная величина). Рассмотрим случай, когда характерная длина *l* значительно превосходит среднее межгранульное расстояние так, что выполняется соотношение

$$l \gg a.$$
 (8)

Правая часть уравнения (7) при этом может рассматриваться как возмущение, а его решение представимо в виде

$$\psi(\boldsymbol{\rho}) = \psi_0 + (a/l)^2 \psi_1(\boldsymbol{\rho}) + \dots, \qquad (9)$$

где $\rho = \mathbf{r}/a$, $\psi_0 = \text{const}$, величина которой определяется из условия разрешимости уравнения для поправки $\psi_1(\rho)$.

Это условие имеет вид

$$\int dV \left\{ \sum_{i} \Theta_{i}(\mathbf{r}) \frac{\mathbf{M}_{i}}{v_{i}} - \frac{I}{J} \mu_{\mathrm{B}}(\psi_{0}^{+} \hat{\boldsymbol{\sigma}} \psi_{0}) \right\} = 0.$$
(10)

Интегрирование в (10) проводится по всему объему системы.

В результате вычислений (10) в рамках использованных приближений определим намагниченность электронов проводимости

$$\mu_{\rm B}(\psi_0^+ \hat{\boldsymbol{\sigma}} \psi_0) = \frac{J}{I} \frac{1}{V} \sum_i \mathbf{M}_i. \tag{11}$$

Таким образом, в случае, когда выполняется условие (8), имеет место результат, аналогичный полученному в теории парамагнетизма системы Ферми-частиц, если полагать, что электроны проводимости движутся в эффективном магнитном поле $\mathbf{H} = (J/I) \sum_{i} \mathbf{M}_{i}$. При этом величина I^{-1} играет роль парамагнитной восприимчивости электронов проводимости. Поэтому при определении ее значения можно воспользоваться следующей оценкой: $I^{-1} \approx \chi = \nu(\varepsilon_{\rm F})\mu_{\rm B}^2$, где $\nu(\varepsilon_{\rm F})$ — плотность состояния электронов проводимости на уровне Ферми.

Таким образом, магнитная энергия (1) гранулированной пленки определяется состоянием подсистем магнитных гранул и в рамках приближения (8) на основании (5), (6), (11) принимает вид

$$E = E_M - \frac{1}{2} \frac{J^2 I^{-1}}{V} \sum_{i,j} \mathbf{M}_i \mathbf{M}_j.$$
(12)

Полное исследование магнитной конфигурации системы возможно лишь для регулярных решеток, состоящих из гранул одинаковой формы и размера. В настоящее время разрабатываются способы получения пленок с подобными характеристиками [5,6,12]. Так, с помощью стандартной методики микрофотолитографии в многослойных пленках [FeNi/Ag] была получена регулярная квадратная решетка магнитных дисков диаметром $2 \cdot 10^{-4}$ сm с периодом $4 \cdot 10^{-4}$ сm [5]. В такой двумерной упорядоченной системе, покрытой тонкой проводящей немагнитной пленкой, наблюдается эффект гигантского магнитосопротивления.

такой системы насыщается в малых магнитных полях, что свидетельствует о слабом антиферромагнитном упорядочении магнитных моментов гранул. Подобные регулярные двумерные структуры также могут быть получены путем лазерно-фокусированного атомного осаждения ферромагнитных пленок [13].

В настоящее время широко доступными являются ГП со случайными параметрами гранул, полученные путем напыления. Следует отметить, что исследования магнитной структуры поверхности ГП подтверждает наличие в них доменной структуры в виде цепочек магнитных гранул [14], что подтверждает упорядочение магнитных моментов гранул.

На основании (12) определим условия реализации FM и AFM порядка в ГП, когда можно выделить по крайней мере ближний порядок между группами гранул. Отметим, что существование ближнего порядка в ориентации моментов отдельных гранул вытекает из свойств магнитостатического поля, которое индуцировано магнитными моментами этих гранул и является потенциальным. Как известно, силовые линии потенциальных полей не пересекаются, поэтому в некотором фрагменте гранулированной пленки существует выделенное направление, соответствующее усредненной ориентации силовых линий. Магнитные моменты гранул направлены параллельно силовым линиям поля, поэтому в их ориентации также будет прослеживаться соответствующий порядок.

Нетрудно убедиться, что $J^{\alpha\beta}(\mathbf{R}_{ij})$ — однородная функция со степенью однородности k = -3, поэтому при переходе к безразмерным переменным $\rho_{ij} = \mathbf{R}_{ij}/a$ выполняется соотношение

$$J^{\alpha\beta}(\mathbf{R}_{ij}) = a^{-3} J^{\alpha\beta}(\boldsymbol{\rho}_{ij}).$$
(13)

Для гранулы с геометрией в форме плоского диска, лежащего в плоскости *YOX*, размагничивающие коэффициенты удовлетворяют соотношениям $n_z \approx 1$, $n_x = n_y \ll n_z$. При этом на основании (12), (13) с учетом интеграла движения \mathbf{M}_i^2 = const эффективное поле, действующее на магнитный момент гранулы, можно представить в виде

$$\mathbf{H}_{i}^{\text{ef}} = -4\pi m_{0} \cos\theta_{i} \mathbf{e}_{z} + \varepsilon_{i} \mathbf{H}_{i}^{m}, \qquad (14)$$

где

$$\varepsilon_i = \frac{1}{a^3} \ll 1,$$
$$\mathbf{H}_i^m = v_i^{-1} \sum_j \mathbf{e}_{\alpha} J^{\alpha\beta}(\boldsymbol{\rho}_{ij}) M_j^{\beta} + V^{-1} \sum_j J^2 \chi \mathbf{M}_j$$

 v_i

Поскольку гранулы обладают большим результирующим моментом, то для определения состояния их намагниченности можно применить статистическое усреднение Ланжевена. При этом на основании (14) среднее значение компонент намагниченности *i*-й гранулы представимо в виде

$$\langle \mathbf{m}_i \rangle = Z^{-1} \int d\Omega_i \mathbf{m}_i \exp(-D_i \cos^2 \theta_i + \varepsilon D_i \mathbf{h}_i^m \mathbf{m}_i),$$
$$Z = \int d\Omega_i \exp(-D_i \cos^2 \theta_i + \varepsilon D_i \mathbf{h}_i^m \mathbf{m}_i), \quad (15)$$

где

$$D_i = \frac{2\pi m_0^2 v_i}{(k_{\rm B}T)}, \quad \mathbf{h}_i^m = \mathbf{H}_i^m / 2\pi m_0, \quad d\Omega_i = -d\cos\theta_i d\varphi_i,$$

 $\mathbf{m}_i = \mathbf{M}_i / M_i$, $k_{\rm B}$ — постоянная Больцмана.

Для гранул с $m_0 = 10^3$ G диаметром и толщиной соответственно $d \approx 6$ nm и $L_z \approx 2$ nm при $T \approx 300$ K величина $D \approx 6 \gg 1$. Следовательно, в соотношении (15) интегрирование по $\cos \theta_i$ с хорошей точностью может быть произведено асимптотическим методом Лапласа. В результате получаем

$$\langle m^z \rangle = 0,$$

$$\begin{cases} \langle m_i^x \rangle \\ \langle m_i^y \rangle \end{cases} = \frac{\int\limits_0^{2\pi} d\varphi_i \left(\cos \varphi_i \\ \sin \varphi_i \right) \exp\{D_i \varepsilon (h_i^x \cos \varphi_i + h_i^y \sin \varphi_i)\}}{\int\limits_0^{2\pi} d\varphi_i \exp\{D_i \varepsilon (h_i^x \cos \varphi_i + h_i^y \sin \varphi_i)\}}.$$
(16)

Для упрощения дальнейших расчетов параметры магнитных включений заменим средними значениями, при этом $M_i = M, v_i = v.$

Будем полагать, что в некотором фрагменте пленки имеются две подсистемы магнитных гранул, так что средние значения их моментов $\langle \mathbf{M}_1 \rangle$, $\langle \mathbf{M}_2 \rangle$ ориентированы по оси *OX*.

В уравнении (16) при записи h_i^y , h_i^x заменим M_j^{α} средними значениями. В результате получим

$$h_{i}^{x} = \langle m_{1}^{x} \rangle (2\pi)^{-1} \sum_{j}^{N_{1}} J^{xx}(\boldsymbol{\rho}_{ij}) + \langle m_{2}^{x} \rangle (2\pi)^{-1} \sum_{j}^{N_{2}} J^{xx}(\boldsymbol{\rho}_{ij}),$$

$$h_{i}^{y} = \langle m_{1}^{x} \rangle (2\pi)^{-1} \sum_{j}^{N_{1}} J^{yx}(\boldsymbol{\rho}_{ij})$$

$$+ \langle m_{2}^{x} \rangle (2\pi)^{-1} \sum_{j}^{N_{2}} J^{yx}(\boldsymbol{\rho}_{ij}), \qquad (17)$$

где $\langle m_1^x \rangle = \langle M_1^x \rangle / M$, $\langle m_2^x \rangle = \langle M_2^x \rangle / M$, а $N_1, N_2 = N/2$ — количество частиц в подсистемах.

Учитывая свойства функций $J^{\alpha\beta}(\rho_{ij})$, нетрудно показать, что для регулярных решеток гранул $h_i^{\gamma} = 0$. В общем же случае $h_i^{\gamma} \neq 0$, но в силу знакопеременного характера $J^{yx}(\rho_{ij})$ будет выполняться соотношение $|\sum_{j}^{N_{1,2}} J^{yx}(\rho_{ij})| \ll |\sum_{j}^{N_{1,2}} J^{xx}(\rho_{ij})|$, поэтому значение h_i^{γ} пренебрежимо мало и опускается в дальнейшем рассмотрении.

С учетом указанных значений уравнения (16) после интегрирования принимают вид

$$\langle m_1^x \rangle = I_1 \{X_1\} / I_0 \{X_1\},$$

 $\langle m_2^x \rangle = I_1 \{X_2\} / I_0 \{X_2\},$ (18)

где

$$egin{aligned} & \left(egin{aligned} X_1 \ X_2 \end{matrix}
ight) = rac{T_c}{T} \, rac{2}{\gamma_1 + \gamma_2} iggl\{ rac{1}{2} J^2 I^{-1} (\langle m_1^x
angle + \langle m_2^x
angle) \ & + \gamma_1 \left(iggl\langle m_1^x
angle
ight) - \gamma_2 \left(iggl\langle m_2^x
angle
ight) \ & \left\langle m_1^x
ight
angle
ight) = \gamma_2 \left(iggl\langle m_1^x
angle
ight) iggr\}, \ & T_c = rac{M^2 (\gamma_1 + \gamma_2)}{2 a^3 k_{
m B}}. \end{aligned}$$

При записи (18) введены усредненные параметры

$$\gamma_{1} = \frac{1}{N_{1}} \sum_{i}^{N_{1}} \sum_{j}^{N_{1}} J^{xx}(\boldsymbol{\rho}_{ij}) = \frac{1}{N_{2}} \sum_{i}^{N_{2}} \sum_{j}^{N_{2}} J^{xx}(\boldsymbol{\rho}_{ij}),$$
$$\gamma_{2} = -\frac{1}{N_{1}} \sum_{i}^{N_{1}} \sum_{j}^{N_{2}} J^{xx}(\boldsymbol{\rho}_{ij}) = -\frac{1}{N_{2}} \sum_{i}^{N_{2}} \sum_{j}^{N_{1}} J^{xx}(\boldsymbol{\rho}_{ij}), \quad (19)$$

где $I_0(x)$, $I_1(x)$ — функция Бесселя мнимого аргумента. Отличия от теории Ланжевена связаны с "замораживанием" степени свободы магнитных моментов в направлении *OZ*.

Система трансцендентных уравнений (18) может иметь следующие качественно различные типы решений:

$$\langle m_1^x \rangle = \langle m_2^x \rangle = 0$$
 — РМ состояние;
 $\langle m_1^x \rangle = \langle m_2^x \rangle = \langle m \rangle$ — FM упорядочение;
 $\langle m_1^x \rangle = -\langle m_2^x \rangle = \langle m \rangle$ — AFM упорядочение

Проанализируем более детально условия реализации того или иного состояния.

При FM упорядочении $\langle m_1^x \rangle = \langle m_2^x \rangle = \langle m \rangle$

$$X_{1} = X_{2} = 2\langle m \rangle \frac{T_{c}}{T} \frac{JI^{-1} + \gamma_{1} - \gamma_{2}}{\gamma_{1} + \gamma_{2}}.$$
 (20)

Анализ уравнений (18) показывает, что они имеют нетривиальное решение при выполнении условия

$$\frac{T}{T_c} < \left(\frac{\gamma_1 - \gamma_2 + J^2 I^{-1}}{\gamma_1 + \gamma_2}\right). \tag{21}$$

В случае реализации AFM состояния $\langle m_1^x \rangle = - \langle m_2^x \rangle = \langle m \rangle$,

$$X_1 = -X_2 = \langle m \rangle \, 2 \, \frac{T_c}{T}. \tag{22}$$

При этом условие существования нетривиального решения уравнений (18) имеет вид

$$T < T_c. \tag{23}$$

Рис. 2. Фазовая диаграмма магнитного состояния гранулированной системы.

Установленные области существования FM и AFM фаз имеют общую зону. Исследования системы, находящейся в AFM фазе, на устойчивость к появлению малых ферромагнитных возмущений в направлении *OY*, проведенные на основании уравнений (11), определили критерий перехода из AFM в FM состояние

$$2J^2I^{-1} \geqslant \gamma_2. \tag{24}$$

Это естественный результат, так как при равенстве в соотношении (24) энергии FM и AFM состояний равны.

Фазовая диаграмма состояния для гранулированных пленок в плоскости $J^2I^{-1}-T$, построенная на основании условий (21)–(24), определяющих межфазные границы, приведена на рис. 2.

Четкие межфазные границы, представленные на рис. 2, могут иметь место для материалов с идеальной решеткой. В общем случае они разделяют области с преобладанием соответствующих фаз.

Числовые параметры γ_1 , γ_2 имеют величину порядка единицы. Так, расчеты, проведенные для решеток гранул с квадратной ячейкой в пределе малых концентраций гранул $v/a^3 \ll 1$, приводят к следующим результатам: а) для двумерной решетки с квадратной ячейкой $\gamma_1 = 4.8$; $\gamma_2 = 0.3$; b) для трехмерной решетки с кубической ячейкой $\gamma_1 = 3.7$; $\gamma_2 = 1.7$.

Оценка величины критической температуры для ГП с параметрами гранул $m_0 \approx 10^3 \text{ G}$, $v^{1/3} \approx 6 \cdot 10^{-7} \text{ cm}$ при объемной концентрации магнитного материала $v/a^3 \approx 5\%$ дает значение $T_c \approx 200 \text{ K}$. При более высоких концентрациях ферромагнетика значения параметров γ_1 , γ_2 зависят от размеров гранул.

Отметим, что при исследовании предложенным способом системы сферических гранул (случай обыкновенных ГП) вместо функций Бесселя в уравнениях (18) возникнет функция Ланжена. Сопоставление результатов в этих двух случаях показывает, что критическая температура T_c системы дисковых гранул в 3/2 раза выше, чем в системе с гранулами шаровой формы. Этот факт, очевидно, связан с замораживанием степени свободы в направлении *OZ* для плоских гранул. Представим далее значение для Т_с в виде

$$T_{c} = (\gamma_{1} + \gamma_{2}) \frac{m_{0}^{2} v}{2k_{\rm B} a^{3}} v, \qquad (25)$$

отметим, что при постоянной концентрации магнитного материала v/a^3 критическая температура растет с увеличением объема гранул по линейному закону. Данный эффект связан с соответственным изменением роли магнитостатического взаимодействия при увеличении размеров гранул.

В заключение на основании полученных результатов выразим соотношение, определяющее энергетическое преимущество магнитостатического взаимодействия AFM фазы над FM фазой. В относительных единицах оно имеет вид

$$\sigma = \frac{|E_{\rm AFM}| - |E_{\rm FM}|}{|E_{\rm AFM}|} \stackrel{=}{\underset{J=0}{=}} \frac{2\gamma_2}{\gamma_1 + \gamma_2}.$$
 (26)

Для двухмерной решетки (рис. 1) $\sigma \approx 10\%$, для трехмерной решетки с кубической ячейкой $\sigma \approx 60\%$.

Эти оценки указывают на то, что установление ферромагнитного порядка в ГП с малой концентрацией гранул возможно только в результате косвенного обменного взаимодействия между гранулами через электроны проводимости при выполнении условия (21).

Список литературы

- M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas. Phys. Rev. Lett. 61, 21, 2472 (1988).
- [2] J.Q. Xiao, J.S. Jiang, C.L. Chien. Phys. Rev. Lett. 68, 25, 3749 (1992).
- [3] A.E. Berkowitz, J.R. Mitchell, M.J. Carey, A.P. Young, S. Zhang, F.E. Spada, F.T. Parker, A. Hutten, G. Thomass. Rev. Lett. 68, 25, 3745 (1992).
- [4] T.L. Hylton. Appl. Phys. Lett. 62, 19, 2431 (1993).
- [5] T.L. Hylton, M.A. Parker, K.R. Coffey, J.K. Howard, R. Fontana, C. Tsang. Appl. Phys. Lett. 67, 8, 1154 (1995).
- [6] С.А. Гусев, Л.А. Мазо, Ю.Н. Ноздрин, М.В. Сапожников, Л.В. Суходеев, А.А. Фраерман. В сб.: Тез. докл. XVI Междунар. школы-семинара НМММ. М. (1998). С. 494.
- [7] T.L. Hylton, K.R. Coffey, M.A. Parker, J.K. Howard. Science 261, 5124, 1021 (1993).
- [8] J.C. Sionczewski. J. Magn. Magn. Mater. 129, 2–3, LI 23 (1994).
- [9] H.Fujimori, S. Mitani, S. Ohnuma. Mater. Sci. End. B31, 219 (1995).
- [10] A.F. Kravets, C.S. Kim, A.Y. Vovk, A.N. Pohorilyi, O.V. Shypil. Book of abstracts of the 7th European magnetic materials and aplicationa conference. Zaragoza, Spain (1998). P. 28.
- [11] В.Г. Барьяхтар, Ю.И. Горобец. Цилиндрические магнитные домены и их решетки. Наук. думка, Киев (1988). 168 с.
- [12] С.В. Гапонов, С.А. Гусев, Л.А. Мазо, Ю.Н. Ноздрин, М.В. Сапожников, Л.В. Суходеев, А.А. Фраерман. В сб.: Тез. докл. XVI Междунар. школы-семинара НМММ. М. (1998). С. 42.
- [13] R.J. Celotta, R. Gupta, R.E. Sholten, J.McClelland. J. Appl. Phys. 79, 8, 6079 (1996).
- [14] Y.J. Chen, W.Y. Cheung, I.H. Wilson, N.Ke, S.P. Wong, J.B. Xu, H. Sang, G. Ni. Appl. Phys. Lett. 72, 19, 2472 (1998).