Антиферромагнитный резонанс в монокристалле CuB₂O₄

© А.И. Панкрац, Г.А. Петраковский, Н.В. Волков

Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук, 660036 Красноярск, Россия

E-mail: pank@cc.krascience.rssi.ru

(Поступила в Редакцию 18 мая 1999 г.)

В интервале частот 2.6–80 GHz и температур 4.2–30 К исследованы частотно-полевые, температурные и угловые зависимости параметров антиферромагнитного резонанса в монокристалле тетрагонального CuB₂O₄. Подтверждено, что в высокотемпературном состоянии в интервале 10–21 К это соединение является легкоплоскостным слабым ферромагнетиком. Измерена температурная зависимость поля Дзялошинского. При T = 4.2 К и H \perp C₄ обнаружен скачок в частотно-полевой зависимости резонанса, свидетельствующий о переходе в индуцированное внешним полем H_{\perp} слабоферромагнитное состояние. Построена фазовая диаграмма состояний CuB₂O₄ в координатах $H_{\perp}-T$. Показано, что в низкотемпературном состоянии магнитные моменты ионов меди остаются в базисной плоскости, но слабый ферромагнетизм отсутствует.

Оксидные соединения меди, интенсивное исследование которых началось с открытием высокотемпературной сверхпроводимости, характеризуются широким набором магнитных структур от обычных трехмерных антиферромагнетиков (Bi_2CuO_4 [1]) до квазинизкомерных магнетиков со спин-Пайерлсовским состоянием (CuGeO₃ [2]) и лестничной структурой (KCuCl₃, LiCu₂O₂ [3,4]).

Недавно были выращены монокристаллы тетрагонального CuB₂O₄ [5] с пространственной группой D_{2d}^{12} . Предварительные исследования [5–7] показали, что ниже $T_N = 21 \text{ K}$ этот кристалл является легкоплоскостным слабым ферромагнетиком. По данным магнитных статических измерений и теплоемкости при $T \approx 10 \text{ K}$ наблюдается магнитный фазовый переход. В работах [6,7] высказано предположение, что этот переход является переходом Морина из слабоферромагнитного в коллинеарное состояние с легкой осью анизотропии, параллельной оси C_4 .

В настоящей работе исследованы частотно-полевые и температурные зависимости резонансного поглощения в CuB₂O₄ с целью получения дополнительной информации о магнитной структуре этого кристалла в первую очередь в низкотемпературном состоянии.

Образцы и экспериментальная техника

Образцы CuB₂O₄ выращены методом спонтанной кристаллизации [5].

Резонансные измерения в диапазоне частот 28–80 GHz сделаны на спектрометре с импульсным магнитным полем, в котором образец располагался в закороченной волноводной секции. В области частот 2.5–10 GHz измерения проводились на спектрометре магнитного резонанса со стационарным магнитным полем. Причем в диапазоне 2.5–6 GHz образец располагался в закороченной коаксиальной секции, а в диапазоне 8–10 GHz — в закороченном волноводе или резонаторе.

2. Экспериментальные результаты

На рис. 1 и 2 показаны частотно-полевые зависимости антиферромагнитного резонанса (АФМР) в CuB₂O₄, измеренные при T = 4.2 К для двух ориентаций магнитного поля относительно оси C_4 кристалла: **H** $\parallel C_4$ и **H** $\perp C_4$. Для ориентации **H** $\parallel C_4$ наблюдается почти линейная частотно-полевая зависимость АФМР, стремящаяся к $\omega_c \approx 1.5$ GHz при $H \rightarrow 0$. При **H** $\perp C_4$ в частотно-полевой зависимости также есть небольшая щель $\omega_c = 2.4$ GHz (см. вставку *I* на рис. 2). Кроме того, в области $H \approx 12$ kOe наблюдается скачкообразное увеличение частоты магнитного резонанса с увеличением поля. Эта область частотно-полевой зависимости АФМР показана отдельно на вставке *2*.

Температурные зависимости резонансных параметров были измерены на нескольких частотах при ориентациях внешнего магнитного поля вдоль оси *C*₄ и в базисной

Рис. 1. Частотно-полевая зависимость магнитного резонанса в CuB_2O_4 для **H** $\parallel C_4$. *T*, K: *I* — 4.2, *2* — 13. Сплошная линия — расчет по формуле (11), штриховые линии *I*, *2* и *3* — расчет по формулам (9) и (10) для ω_{21} , ω_{11} и ω_{12} соответственно.

Рис. 2. Частотно-полевая зависимость магнитного резонанса в CuB₂O₄ для $\mathbf{H} \perp C_4$ при T = 4.2 K. Сплошные линии I и 2 — расчет по формулам (7) и (5) для ω_{22} , штриховые линии 3, 4 и 5 — расчет по формулам (4) и (5) для ω_{21}, ω_{11} и ω_{12} соответственно.

Рис. 3. Температурные зависимости резонансного поля (a) и ширины линии поглощения (b) для **H** $\parallel C_4$. Частота, GHz: 1 — 37.76, 2 — 56.00.

плоскости. На рис. 3 приведены температурные зависимости резонансного поля и ширины линии поглощения, измеренные на двух частотах при **H** $\parallel C_4$. В области $T \approx 8.5$ K на обеих частотах наблюдается резкое уменьшение резонансного поля, сопровождающееся сильным уширением линии поглощения. При дальнейшем нагревании образца резонансное поле плавно увеличивается до значения, характерного для парамагнитной области при T > 20 K [6].

На рис. 4 показаны типичные температурные зависимости резонансного поля, измеренные на трех различных частотах для ориентации $\mathbf{H} \perp C_4$. При измерениях на частотах 10.6 и 28.65 GHz в области низких температур наблюдается резкое изменение резонансного поля. Причем с ростом частоты измерения температура, соответствующая этому изменению поля, уменьшается. При измерении на частоте 56.59 GHz низкотемпературная аномалия резонансного поля не наблюдается вплоть до T = 4.2 K. При нагревании образца с приближением к $T_N = 20$ K резонансное поле увеличивается до значения, характерного для парамагнитного состояния. Причем с понижением частоты интервал температур, в котором происходит это изменение резонансного поля, становится меньше.

На этом же рисунке показаны температурные зависимости ширины линии, измеренные на разных частотах для ориентации $\mathbf{H} \perp C_4$. Характерно, что на часто-

Рис. 4. Температурные зависимости резонансного поля и ширины линии поглощения для $\mathbf{H} \perp C_4$. Частота, GHz: a - 10.6, b - 28.655, c - 56.59.

Рис. 5. Угловые зависимости резонансного поля и ширины линии поглощения для $\mathbf{H} \perp C_4$. Частота, GHz: I = 41.51, 2 = 29.008.

те 56.59 GHz ширина линии, как и резонансное поле, также не показывает аномального поведения в области низких температур, в то время как на частотах ниже ~ 45 GHz наблюдается резко выраженное уширение линии поглощения. Что касается уширения линии поглощения, связанного с приближением к T_N , то интервал температур, в котором наблюдается это уширение, также увеличивается с ростом частоты измерения.

Угловые зависимости резонансного поля и ширины линии поглощения, измеренные в базисной плоскости кристалла на двух частотах при T = 4.2 K, показаны на рис. 5.

3. Обсуждение результатов

В работах [6,7] высказано предположение, что тетрагональный кристалл CuB_2O_4 в области температур 10–21 К является легкоплоскостным слабым ферромагнетиком со спонтанным магнитным моментом, лежащим в базисной плоскости кристалла. Плотность энергии такого магнетика может быть записана в следующем виде [8]:

$$F = J\mathbf{M}_{1}\mathbf{M}_{2} - \mathbf{D}[\mathbf{M}_{1} \times \mathbf{M}_{2}]$$

- $\mathbf{H}(\mathbf{M}_{1} + \mathbf{M}_{2}) - K_{1}/2(\cos^{2}\beta_{1} + \cos^{2}\beta_{2})$
- $K_{2}/2(\cos^{4}\beta_{1} + \cos^{4}\beta_{2}).$ (1)

Здесь J — константа обменного взаимодействия, \mathbf{M}_i — магнитные моменты подрешеток, \mathbf{D} — вектор Дзялошинского, направленный в нашем случае по оси $\mathbf{z} \parallel C_4$, K_1 и K_2 — константы одноосной анизотропии первого и второго порядков, β_i — угол между магнитными моментами подрешеток и главной осью кристалла. Эффективные поля обмена, Дзялошинского и одноосной анизотропии, соответствующие (1), определяются сле-

дующим образом:

$$H_E = JM_0, \quad H_D = DM_0, \quad H_{k1} = K_1/M_0,$$

 $H_{k2} = K_2/M_0, \quad M_0 = |\mathbf{M}_1| = |\mathbf{M}_2|.$

Если переход, наблюдаемый в CuB₂O₄ в малых полях при 10 K, является спин-переориентационным переходом в коллинеарное антиферромагнитное состояние, то он вызван сменой знака эффективного поля одноосной анизотропии $H_a = H_{k1} + H_{k2}$. Аналогичный переход, называемый переходом Морина, наблюадался в гематите α -Fe₂O₃ при $T_M = 262$ K [8]. Ниже этой температуры в гематите устанавливается коллинеарное антиферромагнитное состояние с магнитными моментами, ориентированными вдоль главной оси кристалла.

Несмотря на то что слабый ферромагнетизм отсутствует в низкотемпературном коллинеарном состоянии, взаимодействие Дзялошинского оказывает влияние на поведение антиферромагнетика в магнитном поле [8–10]. В частности, при намагничивании вдоль главной оси кристалла переход в спин-флоп состояние происходит в критическом поле

$$H_c^2 = 2H_E(H_{k1} + H_{k2}) - H_D^2.$$
 (2)

При намагничивании в базисной плоскости кристалла взаимодействие Дзялошинского приводит к тому, что в магнитном поле происходит не только разворот магнитных моментов к направлению поля, но и поворот вектора антиферромагнетизма $\mathbf{l} = (\mathbf{M}_1 - \mathbf{M}_2)/2M_0$ от главной оси кристалла к базисной плоскости. Угол θ между осью C_4 и вектором \mathbf{l} увеличивается с ростом магнитного поля и достигает величины $\pi/2$ при критическом значении поля $H_{c\perp}$

$$H_{c\perp} = (2H_E H_{k1} - H_D^2)/H_D.$$
 (3)

При этом в зависимости от соотношения величин H_E , H_{k1} , H_{k2} и H_D переход в индуцированное полем слабоферромагнитное состояние при $H = H_{c\perp}$ может быть фазовым переходом I или II рода (ФПІ или ФПІІ).

Из исследований температурных и полевых зависимостей намагниченности CuB₂O₄ известно [11], что критическое поле $H_{c\perp}$ зависит от температуры и при T = 4.2 K составляет 12 kOe. При намагничивании вдоль оси C_4 при T = 4.2 K на полевой зависимости намагниченности наблюдается слабо выраженная аномалия в поле H = 2 kOe, которое можно принять за критическое поле $H_{c\parallel}$. Исходя из этих значений критических полей, используя значение $H_D = 1.9$ kOe, полученное в работе [6] для T = 10 K, и пренебрегая температурной зависимостью H_D ниже 10 K, можно вычислить при T = 4.2 K параметры $2H_EH_{k1} = 26.41$ kOe² и $2H_EH_{k2} = -18.8$ kOe².

Резонансные свойства легкоосного антиферромагнетика с взаимодействием Дзялошинского детально рассмотрены в работах [8–10] для случая $H_a \ll H_D \ll H_E$, который хорошо выполняется в CuB₂O₄. Воспользуемся результатами этих расчетов для анализа экспериментальных данных по магнитному резонансу в CuB₂O₄.

Прежде всего обратимся к частотно-полевым зависимостям АФМР, измеренным при T = 4.2 К. Необходимо отметить, что скачок частоты, наблюдаемый при $\mathbf{H} \perp C_4$, происходит в поле, совпадающем с $H_{c\perp}$. В случае $\mathbf{H} \perp C_4$ резонансные частоты для $H < H_{c\perp}$ (состояние 1) имеют вид

$$(\omega_{11}/\gamma)^{2} = ((\omega_{c}/\gamma)^{2} - 12H_{E}H_{k2}\sin^{2}\theta)\cos^{2}\theta,$$

$$(\omega_{21}/\gamma)^{2} = (\omega_{c}/\gamma)^{2} - 4H_{E}H_{k2}\sin^{2}\theta + H^{2},$$

$$\sin\theta = HH_{D} / (2H_{E}(H_{k1} + 2H_{k2}\cos^{2}\theta) - H_{D}^{2}), \quad (4)$$

где $(\omega_c/\gamma)^2 = 2H_E(H_{k1} + 2H_{k2}) - H_D^2 = H_{c\parallel}^2 + 2H_EH_{k2}$ — энергетическая щель в спектре. Индексы в ω_{ij} означают: *i* — номер ветви колебаний, *j* — номер состояния.

В области полей $H > H_{c\perp}$ (состояние 2) резонансные частоты имеют следующий вид:

$$(\omega_{12}/\gamma)^2 = HH_D - (2H_EH_{k1} - H_D^2) = H_D(H - H_E),$$

$$(\omega_{22}/\gamma)^2 = H(H + H_D).$$
 (5)

Экспериментальные данные для $H > H_{c\perp}$ хорошо описываются формулой (5) для высокочастотной ветви колебаний ω_{22} . Сплошной линией показана теоретическая зависимость с $H_D = 1.91$ kOe. В то же время резонансных линий, соответствующих низкочастотной ветви колебаний ω_{12} , показанной на рис. 2 штриховой линией, не обнаружено в полях вплоть до 80 kOe.

В области полей $H < H_{c\perp}$ (состояние 1) экспериментальные данные не совпадают ни с одной из ветвей (4), при вычислении которых использованы приведенные выше значения параметров $2H_EH_{k1}$ и $2H_EH_{k2}$. Более того, частоты ω_{11} и ω_{21} имеют действительные значения, начиная с полей $H \approx 1$ kOe, а энергетическая щель ω_c и частоты обеих ветвей колебаний в полях, меньших 1 kOe, являются мнимыми величинами, что говорит о неправильно выбранном основном состоянии.

Такое несовпадение расчетных зависимостей с экспериментальными данными для полей $H < H_{c\perp}$, а также мнимость резонансных частот могли быть связаны с тем, что для нахождения параметра $2H_EH_{k2}$ использовано ошибочное экспериментальное значение $H_{c\parallel}$.

Поэтому резонно попытаться описать экспериментальные резонансные данные с помощью формул (4), считая, что значения $H_{c\perp}$ и, следовательно, $2H_EH_{k1} = 26.41 \text{ kOe}^2$ определены из эксперимента однозначно, а для нахождения параметра $2H_EH_{k2}$ можно воспользоваться экспериментальным значением энергетической щели $\omega_c = 2.4 \text{ GHz}$. Такой подход дает $2H_EH_{k2} = -11.07 \text{ kOe}^2$, и в этом случае теоретические частотно-полевые зависимости (4) для ω_{11} и ω_{21} , показанные штрихом на рис. 2, являются действительными во всем интервале полей от 0 до $H_{c\perp}$, но ни одна из них не совпадает с экспериментальной частотно-полевой зависимостью. Следует отметить, что при таких величинах $2H_EH_{k1}$ и $2H_EH_{k2}$ расчетное значение критического поля $H_{c\parallel} = 3.4$ kOe, однако в этом поле никаких особенностей на экспериментальной полевой зависимости намагниченности не наблюдается [11].

Необходимо обратить внимание еще на один факт. В работе [10] показано, что при увеличении поля от 0 до $H = H_{c\perp}$ угол θ либо изменяется непрерывно от 0 до $\pi/2$ (ФПП), либо сначала непрерывно от 0 до $\theta_1 < \pi/2$, а затем в поле $H = H_{c\perp}$ — скачком до $\theta = \pi/2$ (ФПП). Выражение для частоты ω_{21} вблизи $H = H_{c\perp}$ можно переписать в следующем виде:

$$(\omega_{21}/\gamma)^2 = H(H + H_D/\sin\theta). \tag{6}$$

Поэтому при переходе из коллинеарного в слабоферромагнитное состояние переход $\omega_{21} \rightarrow \omega_{22}$ в случае ФПП также происходит непрерывно, а в случае ФПП скачком, так что $\Delta \omega = \omega_{22} - \omega_{21} < 0$.

Однако из рис. 2 видно, что в нашем случае $\Delta \omega > 0$. Кроме того, экспериментальная частотно-полевая зависимость при T = 4.2 К в интервале полей от 0 до $H_{c\perp}$ хорошо описывается законом

$$(\omega/\gamma_{\perp})^2 = H^2(1 + |H_a|/2H_E) + H_{\Delta}^2$$
(7)

с $|H_a|/2H_E = 0.031 \pm 0.005$ и $H^2_{\Delta} = (0.526 \pm 0.004)$ kOe² (сплошная линия на рис. 2). Здесь H_a — эффективное поле анизотропии относительно оси C_4 , H^2_{Δ} — изотропная энергетическая щель, которая может быть вызвана магнитоупругим [12] или другими взаимодействиями. Гиромагнитное отношение $\gamma_{\perp} = 2.983$ MHz/Oe соответствует значению $g_{\perp} = 2.133$, полученному из ЭПР при комнатной температуре [6]. Зависимость (7) характерна для легкоплоскостных антиферромагнетиков без слабого ферромагнетизма (см., например, [13,14]).

Таким образом, приведенные факты позволяют усомниться в том, что с понижением температуры при T = 10 К слабый ферромагнетик CuB₂O₄ переходит в коллинеарное состояние с легкой осью анизотропии, совпадающей с осью C₄.

Можно предположить, что в CuB_2O_4 и при T < 10 К магнитные моменты остаются в базисной плоскости, но магнитная структура в этом состоянии не допускает существования макроскопического спонтанного магнитного момента. Возможные варианты реализации такой магнитной структуры будут рассмотрены далее.

Резкие аномалии на температурной зависимости резонансных параметров CuB₂O₄ при T < 10 K (рис. 4), наблюдаемые на некоторых частотах в полях, параллельных базисной плоскости, связаны с переходом из низкотемпературного состояния 1 в слабоферромагнитное состояние 2 в поле $H_{c\perp}$. Из рисунка видно, что температура перехода зависит от частоты измерения, это свидетельствует о температурной зависимости критического поля $H_{c\perp}$. На рис. 6 приведена фазовая $H_{\perp}-T$ диаграмма, построенная по данным статических магнитных измерений [11], теплоемкости [7] и резонансным

Рис. 6. Фазовая $H_{\perp} - T$ диаграмма состояний CuB₂O₄. Данные: 1 — статические магнитные измерения, 2 — резонансные, 3 — теплоемкость.

Рис. 7. Температурная зависимость поля Дзялошинского. Частота измерений, GHz: *1*—10.6, *2*—28.655, *3*—56.59.

данным. Из фазовой диаграммы ясно, что отсутствие низкотемпературной аномалии для частоты 56.09 GHz (рис. 4, *c*) вызвано тем, что в резонансном поле для этой частоты ($\sim 18 \text{ kOe}$) кристалл CuB₂O₄ уже при T = 4.2 K находится в индуцированном полем слабоферромагнитном состоянии.

Пользуясь уравнением (5) для ω_{22} , из температурной зависимости резонансного поля в слабоферромагнитном состоянии можно рассчитать температурную зависимость поля Дзялошинского $H_D(T)$, которая показана на рис. 7. Из приведенных данных видно, что полученные таким образом значения H_D не зависят от частоты измерения при температурах ниже ~ 12 К. Выше этой температуры с приближением к T_N зависимость $H_D(T)$ спадает до нуля тем быстрее, чем выше частота измерения. По-видимому, это связано с тем, что резонансные поля, соответствующие высоким частотам измерения, становятся соизмеримыми с обменным полем, которое

аномально мало в CuB₂O₄ [11]. Это приводит к тому, что угол скоса магнитных подрешеток φ во внешнем поле уже нельзя считать малым, и вместо уравнения (5) для ω_{22} необходимо использовать [15]

$$(\omega_{22}/\gamma)^2 = H(H + |H_a|\sin\varphi + H_D\cos\varphi).$$
(8)

Понятно, что роль этого фактора возрастает по мере уменьшения H_E с приближением к T_N . Считая, что измерения на частоте 10.6 GHz дают наиболее близкую к реальной зависимость $H_D(T)$ и пренебрегая вкладом H_a ($|H_a| \ll H_D, H$), получаем, что в резонансном поле $H \approx 18$ kOe, соответствующем частоте 56.09 GHz, угол скоса подрешеток $\varphi \approx 50^{\circ}$ при T = 15 K.

Уширение линии поглощения, наблюдаемое в области T_N на частоте 10.6 GHz, имеет обычный вид, характерный для флуктуационного уширения. Обычно увеличение частоты измерения приводит к сужению пика на температурной зависимости ширины линии и уменьшению его амплитуды, так как сильное поле более эффективно подавляет флуктуации, разрушающие магнитный порядок (см., например, [16]). Однако в CuB₂O₄ наблюдается обратная картина: пик на температурной зависимости ширины линии существенно расширяется с ростом частоты. При этом с приближением к T_N для одной и той же частоты наблюдается четкая корреляция между начинающимися процессами резкого уширения линии поглощения и отклонения от истинной температурной зависимости поля Дзялошинского. Поэтому возможно, что такое необычное поведение ширины линии обусловлено процессом "схлопывания" подрешеток.

Обратимся к анализу резонансных данных для $\mathbf{H} \parallel C_4$. В случае коллинеарного антиферромагнетика с легкой осью анизотропии, параллельной C_4 , частотно-полевые зависимости имеют вид

$$\omega_{11,21}/\gamma = \omega_c/\gamma \pm H, \quad H < H_{c\parallel} \tag{9}$$

$$(\omega_{12}/\gamma)^2 = H^2 - (2H_E H_{k1} - H_D^2), \quad H > H_{c\parallel}$$
(10)
 $\omega_{22} = 0$

 ω_c/γ — энергетическая щель в спектре, имеющая вид (4). Для расчета частотно-полевых зависимостей использованы те же значения $2H_EH_{k1}$ и $2H_EH_{k2}$, что и в случае **H** \perp C_4 . Расчетные зависимости ω_{11}, ω_{21} и ω_{12} , показанные на рис. 1 и вставке, не совпадают с экспериментальными данными. Кроме того, из расчета следует, что для использованных значений параметров $2H_EH_{k1}$ и $2H_EH_{k2}$ в интервале полей приблизительно от 0.8 до 4.8 kOe вообще не должно быть резонансного поглощения, однако экспериментально это поглощение наблюдается.

Более того, экспериментальная частотно-полевая зависимость АФМР при T = 4.2 К для Н || C_4 является гладкой во всем интервале измерений от 0.8 до 25 kOe, не имеющей особенностей, сопровождающих спин-переориентационный переход от легкоосного к спин-флоп состоянию. Об отсутствии такого перехода при T = 4.2 К говорят и аномалии на температурной зависимости резонансного поля и ширины линии (рис. 3). Очевидно, что именно скачок резонансного поля и уширение линии поглощения связаны с переходом из низкотемпературного состояния в легкоплоскостную слабоферромагнитную фазу. Температура аномалий в пределах ошибки измерения совпадает с температурой перехода по данным теплоемкости [7] и не зависит от внешнего поля, как должно быть в случае перехода из легкоосного в легкоплоскостное состояние.

При $T = 4.2 \,\text{K}$ частотно-полевая зависимость для **H** $\parallel C_4$ хорошо описывается зависимостью

$$(\omega/\gamma_{\parallel})^2 = H^2 + H_{\Delta}^2 \tag{11}$$

с $\gamma_{\parallel} = 2.92 \pm 0.01$ и $H_{\Delta}^2 = 0.26 \pm 0.03$ кОе² (сплошная линия на рис. 1). Такая зависимость характерна для легкоплоскостных антиферромагнетиков, в этом случае энергетическая щель $H_{\Delta}^2 = 2H_EH_{k1} + H_D^2$. Конечно, вызывает удивление малая величина щели. Однако аналогичный (11) характер частотно-полевой зависимости с таким же значением H_{Δ}^2 сохраняется и при переходе в слабоферромагнитное состояние. Скачок резонансного поля при этом переходе формально можно описать изменением величины *g*-фактора от $g_{\parallel} = 2.087$ при T = 4.2 K до $g_{\parallel} = 2.210$ при T = 13 K. Причина такого поведения *g*-фактора при переходе непонятна.

Таким образом, резонансные данные для $\mathbf{H} \parallel C_4$ также свидетельствуют о том, что CuB₂O₄ в низкотемпературной фазе не явлется коллинеарным антиферромагнетиком с легкой осью анизотропии, параллельной оси C_4 .

Что касается предполагаемых магнитных структур, которые могут реализоваться в низкотемпературном состоянии CuB₂O₄, то одна из возможных причин отсутствия слабоферромагнитного момента в низкотемпературном состоянии может заключаться в том, что в этом состоянии соседние локальные слабоферромагнитные моменты упорядочиваются антиферромагнитным образом. Подобная структура реализуется, например, в Y₂CuO₄ [17] и в системе YFe_{1-x}Cr_xO₃ [18]. Их можно рассматривать как слабонеколлинеарные четырехподрешеточные структуры, которые исследованы, например, в [19]. Причем внешнее поле, приложенное в базисной плоскости кристалла Y₂CuO₄, как и в CuB₂O₄, индуцирует переход в слабоферромагнитное состояние.

Отсутствие слабоферромагнитного момента в низкотемпературном состоянии CuB_2O_4 может быть также обусловлено геликоидальной магнитной структурой. Похожее поведение показывает гексагональный NiBr₂ [20]. В этом кристалле при $T_N = 52$ К устанавливается коллинеарное магнитное упорядочение с легкой плоскостью анизотропии, перпендикулярной гексагональной оси, а при дальнешем снижении температуры ниже T = 22.8 K NiBr₂ переходит в геликоидальную несоразмерную фазу. Внешнее магнитное поле, приложенное в базисной плоскости при температурах ниже 22.8 К, разрушает геликоидальную структуру, переводя этот кристалл в легкоплоскостное коллинеарное состояние.

В пользу геликоидальной магнитной структуры в низкотемпературном состоянии СиВ₂О₄ может свидетельствовать наличие и отсутствие угловой зависимости резонансных параметров в базисной плоскости в полях соответственно выше и ниже H_{c+} . В отсутствие внешнего магнитного поля локальные векторы антиферромагнетизма в геликоидальной структуре распределены равномерно по всем направлениям в базисной плоскости. Внешнее магнитное поле деформирует геликоид, превращая его в веерную структуру, в которой векторы антиферромагнетизма распределены в пределах сектора с угловым размером α . Если величина α сравнима с периодом тетрагональной угловой зависимости $\pi/2$, то усреднение по всем локальным позициям приведет к отсутствию угловой зависимости резонансных параметров в базисной плоскости.

Для уточнения магнитной структуры CuB₂O₄ необходимо провести нейтронографические исследования этого кристалла.

Таким образом, в настоящей работе изучены частотнополевые и температурные зависимости резонансного поглощения в тетрагональном монокристалле CuB₂O₄.

При T = 4.2 К обнаружен скачок в частотно-полевой зависимости при $\mathbf{H} \perp C_4$ в поле $H \approx 12$ kOe, связанный с переходом из низкотемпературного в слабоферромагнитное состояние. Установлено, что температура такого перехода зависит от магнитного поля H_{\perp} , приложенного в базисной плоскости кристалла, и не зависит от поля вдоль оси C_4 .

Построена фазовая диаграмма состояний CuB_2O_4 в координатах $H_{\perp}-T$.

В слабоферромагнитном состоянии частотно-полевая зависимость в случае $\mathbf{H} \perp C_4$ типична для легкоплоскостных антиферромагнетиков с взаимодействием Дзялошинского. Из экспериментальных данных в интервале температур 4.2–20 К вычислена температурная зависимость поля Дзялошинского.

Анализ частотно-полевых зависимостей при $T = 4.2 \,\mathrm{K}$ показывает, что в низкотемпературной фазе $\mathrm{CuB_2O_4}$ не является коллинеарным антиферромагнетиком с легкой осью анизотропии, параллельной оси C_4 . Сделано предположение, что при переходе в низкотемпературное состояние магнитные моменты остаются в базисной плоскости кристалла, но магнитная структура не допускает существования слабоферромагнитного момента.

Авторы выражают благодарность К.А. Саблиной за выращивание монокристаллов CuB₂O₄ высокого качества и А.М. Воротынову за плодотворное обсуждение.

Работа выполнена при поддержке Красноярского краевого фонда науки (грант № 8F0156).

Список литературы

- G.A. Petrakovskii, K.A. Sablina, A.I. Pankrats, A.M. Vorotinov, A. Furrer, B. Roessli, P. Fisher. J. Magn. Magn. Mater. 140–144, 1991 (1995).
- [2] Г.А. Петраковский. Изв. вузов. Физика 1, 91 (1998).
- [3] H. Tanaka, K. Takatsu, W. Shiramura, T. Ono. J. Phys. Soc. Jap. 65, 7, 1945 (1996).
- [4] А.М. Воротынов, А.И. Панкрац, Г.А. Петраковский, К.А. Саблина, В. Пашкович, Г. Шимчак. ЖЭТФ 113, 5, 1866 (1998).
- [5] Г.А. Петраковский, К.А. Саблина, Д.А. Великанов, А.М. Воротынов, Н.В. Волков, А.Ф. Бовина. Кристаллография (1999), в печати.
- [6] Г.А. Петраковский, К.А. Саблина, Д.А. Великанов, А.М. Воротынов, Н.В. Волков, А.Ф. Бовина. ФТТ 41, 7–8 (1999).
- [7] G. Petrakovskii, D. Velikanov, A. Vorotinov, A. Balaev, K. Sablina, A. Amato, B. Roessli, J. Schefer, U. Staub. J. Magn. Magn. Mater. (1999), to be published.
- [8] I.S. Jacobs, R.A. Beyerlein, S. Foner, J.P. Remeika. Intern. J. Magnetism 1, 1, 193 (1971).
- [9] В.И. Ожегин, В.Г. Шапиро. ЖЭТФ 54, 1, 96 (1968).
- [10] В.И. Ожегин, В.Г. Шапиро. ЖЭТФ 55, 5, 1737 (1968).
- [11] Г.А. Петраковский, А.Д. Балаев, А.М. Воротынов. ФТТ, в печати.
- [12] А.С. Боровик-Романов, Е.Г. Рудашевский. ЖЭТФ 47, 6, 2095 (1964).
- [13] A.I. Pankrats, D.Yu. Sobyanin, A.M. Vorotinov, G.A. Petrakovskii. Solid. Stat. Commun. 109, 4, 263 (1999).
- [14] L.P. Regnault, J. Rossat-Mignod, A. Adam, D. Billerey, C. Terrier. J. Phys. 43, 8, 1283 (1982).
- [15] А.Г. Гуревич. Магнитный резонанс в ферритах и антиферромагнетиках. Наука, М. (1973).
- [16] E.G. Rudashevsky, V.N. Seleznyov, L.V. Velikov. Solid. Stat. Phys. 11, 8, 959 (1972).
- [17] A. Rouco, X. Obradors, M. Tovar, F. Perez, D. Chateigner, P. Bordet. Phys. Rev. B50, 14, 9924 (1994).
- [18] А.М. Кадомцева, А.С. Москвин, И.Г. Бострем, Б.М. Ванклин, Н.А. Хафизова. ФТТ 72, 6, 2286 (1977).
- [19] Е.А. Туров. Физические свойства магнитоупорядоченных кристаллов. Изд-во АН СССР, М. (1963).
- [20] A. Adam, D. Billerey, C. Terrier, K. Katsumata, J. Magarino, J. Tuchendler. Phys. Lett. **79A**, *4*, 353 (1980).