Спектры отражения нового органического металла (BEDO-TTF)₅[CsHg(SCN)₄]₂

© Р.М. Власова, Н.В. Дричко, В.Н. Семкин, Е.И. Жиляева*, О.А. Богданова*, Р.Н. Любовская*, А. Грайя**

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Институт проблем химической физики Российской академии наук,

142432 Черноголовка, Московская обл., Россия

** Институт молекулярной физики Польской академии наук,

60-179 Познань, Польша

E-mail: Rema.Vlasova@shuvpop.ioffe.rssi.ru

(Поступила в Редакцию 8 июня 1999 г.)

Изучены поляризованные спектры отражения и оптической проводимости микрокристаллов нового органического проводника на основе донорной молекулы bis(ethylenedioxi)tetratiafulvalene (BEDO-TTF): $(BEDO-TTF)_5[CsHg(SCN)_4]_2$ в спектральной области 600—6500 и 9000—40 000 cm⁻¹ для трех главных направлений в кристалле при 300 К. Получено оптическое доказательство квазидвумерного характера проводящей электронной системы. Сделано заключение, что исследованный кристалл представляет собой квазидвумерный полуметалл с перекрывающимися электронными зонами. В рамках модели Друде определены ключевые параметры электронной системы кристалла, установлено, что разрешенные электронные зоны у него несколько у́же, чем у ранее исследованного родственного по структуре сверхпроводника на основе той же молекулы. Сделано отнесение особенностей колебательной структуры в спектрах $\sigma(\omega)$ для указанных трех поляризаций.

В настоящее время получено большое число высокопроводящих катион-радикальных солей на основе молекулы bis(ethylenedithio)tetratiafulvalene (BEDT-TTF), свойства которых меняются в широких пределах, от полупроводников до квазидвумерных металлов и сверхпроводников, в зависимости от структуры проводящих слоев катион-радикалов BEDT-TTF и химической природы анионов [1–3]. В числе полученных на основе BEDT-TTF 20 сверхпроводников имеется группа солей с наиболее высокими для органических соединений температурами перехода в сверхпроводящее состояние T_c : k-(BEDT-TTF)₂Cu[N(CN)₂]X, X = Cl($T_c = 12.3$ K, 0.3 kbar); Br ($T_c = 11.6$ K) [1], Ci_{0.5}Br_{0.5} ($T_c = 11.3$ K) [4].

В процессе поиска новых органических сверхпроводников недавно была синтезирована донорная гетероциклическая молекула — аналог молекулы BEDT-TTF, — в которой 4 атома серы в шестичленных кольцах заменены атомами кислорода, bis(ethylenedioxi)tetratiafulvalene (BEDO-TTF) [5] (рис. 1). Предполагалось, что при обычном фононном механизме сверхпроводимости (БКШ) замена 4 атомов серы более легкими атомами кислорода может привести к повышению Т_с вследствие уменьшения общей массы молекулы, а также вследствие большей плотности состояний на уровне Ферми в солях на основе BEDO-TTF [6]. С другой стороны, в солях на основе BEDO-TTF можно ожидать увеличения Т_с из-за повышения частоты внутримолекулярных колебаний, взаимодействующих с электронной системой [7]. До последнего времени на базе этой молекулы удалось получить два сверхпроводника: (BEDO-TTF)₅Cu₂(NCS)₃ с $T_c = 1.1 \text{ K}$ [1] и $(BEDO-TTF)_2 ReO_4(H_2O)$ c $T_c = 2.5 K$ [8,9]. B pagoтах [10,11] представлены исследования поляризованных спектров отражения второго сверхпроводника.

Недавно на базе молекулы BEDO-TTF получена новая группа органических металлов: (BEDO-TTF)_m[MHg(SCN)₄]₂, где M = Cs, Rb, K, NH₄, Li, и описаны структура и электропроводность некоторых из этих соединений [12,13].

В данной работе мы представляем исследования поляризованных спектров отражения в широкой спектральной области (600–6500 и 9000–40 000 сm⁻¹) при 300 K одной из солей этой группы: (BEDO-TTF)₅[CsHg(SCN)₄]₂, нового органического металла, который при понижении температуры переходит в диэлектрическое состояние (при 85 K), и проводим сравнение полученных спектров с соответствующими спектрами сверхпроводника (BEDO-TTF)₂ReO₄(H₂O) [10].

1. Эксперимент

Кристаллы BEDO-TTF₅[CsHg(SCN)₄]₂ представляют собой черные хорошо ограненные параллелепипеды размером $2 \times 0.5 \times 0.2$ mm с гладкими, зеркальными поверхностями.

Их основные кристаллографические данные следующие: триклинная сингония, пространственная группа *P*1, Z = 1; параметры ячейки: a = 10.436 Å, b = 10.709 Å, c = 19.973 Å, $\alpha = 89.59^{\circ}$, $\beta = 81.88^{\circ}$, $\gamma = 72.76^{\circ}$, V = 2109 Å³ [13]. Кристаллы имеют слоистую структуру: слои катион-радикалов BEDO-TTF^{+0.4e} чередуются с анионными слоями вдоль оси *c* параллельно плоскости (*ab*). (Степень окисления молекул BEDO-TTF составляет +0.4e). В проводящем слое катион-радикалы

BEDO-TTF

Рис. 1. Структурные формулы молекул bis(ethylenedithio)tetratiafulvalene (BEDT-TTF) и bis(ethylenedioxi)tetratiafulvalene (BEDO-TTF).

ВЕDO-TTF^{+0.4e} образуют стопки и ленты. Стопки ориентированы вдоль направления b-2a, т.е. [$\bar{2}10$], с укороченными контактами (3.55–3.67 Å) между атомами *S* соседних молекул. В стопках почти плоские молекулы BEDO-TTF упакованы плоскость к плоскости (face-toface). Плоские ленты расположены вдоль кристаллического направления 3b-a с укороченными контактами между соседними молекулами в ленте 3.36-3.47 Å, в лентах молекулы направлены боком друг к другу (sideby-side). В анионном слое атом Hg координируется с четырьмя SCN-группами, которые образуют тетраэдр. Анионы [Hg(SCN)₄]²⁻, связанные ионами Cs⁺, образуют цепочки вдоль оси *a*. Катионный и анионный слои связаны укороченными контактами.

Внешняя огранка кристалла образована гранями ab~(001) и bc~(100), причем направление стопок (b-2a), обозначенное нами через **I**, совпадает с направлением длинного ребра кристалла.

Поляризованные спектры отражения $R(\omega)$ при нормальном падении света на указанные, более развитую (001) и боковую (100), грани кристалла в области $600-6500 \,\mathrm{cm}^{-1}$ измерялись на фурье-спектрометре Perkin-Elmer 1725X, оборудованном микроскопом с охлаждаемым азотом МСТ-детектором. Диаметр светового пучка — $100 \,\mu$ m, разрешение $4 \,\mathrm{cm}^{-1}$, "golden wire" — поляризатор. В области 9000-40 000 cm⁻¹ спектры измерялись на двухлучевом микроспектрорефлектометре разработки ГОИ, диаметр пучка 25 µm, разрешение 60 cm⁻¹, поляризатор — призма Глана-Томпсона. Контроль качества и положения анализируемой поверхности относительно оси микроскопов и ориентация кристалла в поле световой волны осуществлялись путем наблюдения картины в выходном зрачке приборов. При измерении отражения от каждой грани были исследованы различные микроучастки поверхности на нескольких кристаллах и на каждой грани был выбран наиболее хорошо отражающий участок. Абсолютное значение коэффициента отражения определялось по отношению к алюминиевому зеркалу и SiC.

От развитой грани (001) спектры отражения были измерены в поляризациях, в которых в области $600-6500 \,\mathrm{cm^{-1}}$ наблюдалась наибольшая анизотропия спектров. Ими оказались поляризации, в которых электрический вектор световой волны параллелен и перпендикулярен направлению стопок BEDO-TTF, т.е. Е || I и Е \perp I. Спектры от боковой грани (100) измерены в поляризациях Е || I и Е \perp (*ab*), т.е. Е почти || с. Точность установки кристалла в поле световой волны составляла 7–10°.

Спектры оптической проводимости $\sigma(\omega)$ были получены из соответствующих спектров $R(\omega)$ по соотношениям Крамерса–Кронига. В низкочастотной области была использована экстраполяция по формуле Хагена– Рубенса $R(\omega) = 1 - \alpha \omega^{1/2}$. В сторону высоких частот использовалась стандартная экстраполяция вида $R(\omega) \sim (\omega_0/\omega)^{\alpha}$. Экстраполяция спектра отражения в неизмеренную спектральную область 6500–9000 сm⁻¹ была сделана на основании изученных в этой области спектров кристаллов солей BEDT-TTF [14].

2. Результаты

Поляризованные спектры отражения кристаллов (BEDO-TTF)₅[CsHg(SCN)₄]₂ от граней (001) и (100) в области $600-40\,000\,\mathrm{cm^{-1}}$ представлены на рис. 2, *a*, *b* соответственно.

Из рис. 2, а видно, что максимальное отражение наблюдается в поляризации E \perp I, минимальное — в поляризации E || I. В обеих поляризациях при низких частотах в спектрах наблюдается высокое отражение, до 0.75 в поляризации E \perp I и до 0.60 — для E || I. Для **E** \perp **I** с увеличением частоты отражение вначале плавно, а затем достаточно резко падает, обнаруживая хорошо выраженный плазменный край в диапазоне 2500-6000 cm⁻¹ и глубокий минимум (до 0.05) вблизи 6000 cm⁻¹. Для Е || І падение отражения с частотой менее резкое, плазменный край менее выражен и наблюдается в более узком диапазоне, 3700-5500 cm⁻¹, с минимумом при 5500 cm⁻¹. Видно, что в обеих поляризациях полученные спектры качественно подобны спектрам металла и близки по виду к спектрам отражения сверхпроводника (BEDO-TTF)₂ReO₄(H₂O) [10]. Полученная анизотропия спектров в плоскости (001) невелика.

В области ниже 2000 сm⁻¹ для $\mathbf{E} \perp \mathbf{I}$ наблюдаются особенности в виде небольших провалов, связанные, по нашему мнению, с характерным для органических проводников взаимодействием электронной системы с внутримолекулярными колебаниями (BMK) BEDO-TTF. Указанные особенности находятся на частотах 860, 1188, 1199, 1440 и 1612 сm⁻¹. В поляризации $\mathbf{E} \parallel \mathbf{I}$ заметны только две колебательные особенности: более сильная полоса в виде "провал-пик" при 956 сm⁻¹ и совсем слабый провал при 1188 сm⁻¹. На частоте 2100 сm⁻¹ в обеих поляризациях наблюдается узкая интенсивная двойная полоса, обусловленная характерным валентным колебанием CN-групп аниона.

Рис. 2. Поляризованные спектры отражения кристалла (BEDO-TTF)₅[CsHg(SCN)₄]₂. a — от грани (001): $\mathbf{E} \perp \mathbf{I}$ (1) и $\mathbf{E} \parallel \mathbf{I}$ (2); b — от грани (100): $\mathbf{E} \parallel \mathbf{I}$ (3) и $\mathbf{E} \perp$ плоскости (ab) (4); сплошная линия — эксперимент, штриховая — расчет по модели Друде. На вставке: $\mathbf{E} \parallel \mathbf{I}$: грань (001) (2), грань (100) (3).

На рис. 2, *b* представлены спектры отражения от боковой грани кристалла (100) в поляризациях Е || І и $\mathbf{E} \perp$ плоскости (*ab*). Сильная анизотропия отражения в этой плоскости качественно отличается от наблюдаемой слабой анизотропии в плоскости (001). Спектр отражения в поляризации E || I имеет металлический характер и близок к спектру отражения в этой поляризации (E || I) от грани (001). Различие этих спектров состоит в том, что, как видно из вставки на рис. 2, а, плазменный край отражения для грани (100) лежит при более низкой частоте с минимумом вблизи 4500 cm⁻¹. Спектр в другой поляризации, $\mathbf{E} \perp$ плоскости (*ab*), когда вектор **E** направлен практически перпендикулярно проводящим слоям, имеет качественно другой характер. Во всей ИК области наблюдается типичное для диэлектрика низкое отражение — от 0.13 до 0.06. В области ниже 2000 ст⁻¹

на этом низком фоне отражения проявляются узкие интенсивные колебательные особенности на частотах: 864, 1010, 1188, 1201, 1270, 1378 и 1609 ст⁻¹, которые связаны с оптически активными колебаниями BEDO-TTF. В районе 2100 ст⁻¹ наблюдается также очень слабая полоса колебаний CN-групп аниона.

В области 9000-40000 cm⁻¹, лежащей выше плазменной частоты, в спектрах наблюдаются очень широкие мало интенсивные полосы. В спектре отражения от грани (001) для E \perp I имеется полоса $(R_{\rm max} = 0.13)$ с максимумом при $32400 \,{\rm cm}^{-1}$, в поляризации E || I для обеих граней наблюдается аналогичная, но более слабая полоса ($R_{\rm max} = 0.08$). В поляризации, где вектор Е перпендикулярен проводящим слоям (грань (100, $\mathbf{E} \perp$ плоскости (*ab*)) наблюдается полоса в районе 13000 cm⁻¹. Полагаем, что эти полосы связаны с внутримолекулярными электронными переходами BEDO-TTF. На основании структуры [13] и интенсивностей полос можно предположить, что полоса при 32400 cm⁻¹ поляризована преимущественно вдоль короткой оси молекулы, полоса при $13\,000\,{
m cm}^{-1}$ поляризована вдоль длинной оси молекулы.

На рис. З представлены спектры оптической проводимости $\sigma(\omega)$ в области 700-6000 сm⁻¹. Из рисунка видно, что в поляризациях, когда вектор Е лежит в проводящей плоскости: E \perp I и E || I для грани (001) и **E** || **I** для грани (100), вид трех спектров качественно один и тот же. В области 700-1500 cm⁻¹ наблюдается достаточно резкое падение проводимости. В области выше 1500 cm⁻¹ наблюдается плавное уменьшение проводимости металлического типа к высоким частотам, в поляризации Е || I для грани (001) на фоне плавного уменьшения заметен небольшой перегиб вблизи 4000 cm^{-1} . Обращает на себя внимание также тот факт, что оптическая проводимость в поляризации Е || І при измерении от грани (001) во всей исследованной области больше, чем при измерении от грани (100) в той же поляризации, что обусловлено различием соответствующих спектров отражения. В области ниже $2000 \,\mathrm{cm}^{-1}$ в рассматриваемых спектрах $\sigma(\omega)$ заметны слабые колебательные особенности в виде узких полос или полос формы "провал-пик", характерной для особенностей, обусловленных резонансным взаимодействием ВМК с электронами проводимости.

Из рис. З видно также, что в противоположность близкому к металлическому характеру спектров $\sigma(\omega)$ для поляризаций, когда вектор **E** лежит в проводящей плоскости, спектр $\sigma(\omega)$ не имеет металлического характера в случае, когда вектор **E** перпендикулярен проводящим плоскостям (грань (100), **E** \perp плоскости (*ab*)). В спектре $\sigma(\omega)$ отчетливо наблюдается очень широкая (2000–6000 cm⁻¹) электронная полоса с максимумом вблизи 4000 cm⁻¹. В области ниже 2000 cm⁻¹ наблюдаются интенсивные узкие пики, которые обусловлены оптически активными ВМК молекулы BEDO-TTF. Отнесение всех наблюдаемых в спектрах $R(\omega)$ и $\sigma(\omega)$ колебательных особенностей будет дано далее при обсуждении результатов измерений.

Рис. 3. Спектры оптической проводимости кристалла (BEDO-TTF)₅[CsHg(SCN)₄]₂. Грань (001): $\mathbf{E} \perp \mathbf{I}$ (1) и $\mathbf{E} \parallel \mathbf{I}$ (2) (сплошная линия — эксперимент, штриховая — расчет по модели Друде); грань (100): $\mathbf{E} \parallel \mathbf{I}$ (3) и $\mathbf{E} \perp$ плоскости (*ab*) (4). На вставке: то же в растянутом масштабе 700–1600 cm⁻¹.

3. Обсуждение результатов

3.1. Электронные явления. Из приведенных на рис. 2 и 3 спектров $R(\omega)$ и $\sigma(\omega)$ следует, что отражение света и оптическая проводимость металлического типа в исследованных кристаллах (BEDO-TTF)₅[CsHg(SCN)₄]₂ в ИК области проявляются только в том случае, когда вектор E параллелен плоскости слоев BEDO-TTF, и отсутствует, когда вектор Е перпендикулярен этой плоскости. Найденная анизотропия указывает на квазидвумерный характер проводящей электронной системы в кристаллах. Подобный результат был получен нами ранее для ряда проводников и сверхпроводников на основе молекулы BEDT-TTF [14]. Проявлением квазидвумерного характера электронной системы может быть и наличие широкого максимума в спектре $\sigma(\omega)$ вблизи 4000 ст⁻¹ в направлении, перпендикулярном проводящим плоскостям в кристалле (грань (100), $\mathbf{E} \perp (ab)$). Благодаря большой действующей апертуре объектива ИК микроскопа в падающем на кристалл световом пучке имеются наклонные лучи. Как показано в [15], в квазидвумерном кристалле при наклонном падении света на грань кристалла, перпендикулярную проводящим плоскостям, должно происходить прямое возбуждение плазмонов светом в том случае, когда вектор Е лежит в плоскости падения. Действительно, широкий максимум в спектре $\sigma(\omega)$ расположен, как видно из рис. 3, вблизи плазменного минимума (4500 сm⁻¹) в поляризации **E** || **I** для этой грани. Аналогичный максимум в соответствующей поляризации наблюдался нами ранее для кристаллов (BEDT-TTF)₂Cu[N(CN)₂]Cl_{0.5}Br_{0.5} в работе [16], где были обсуждены также и другие возможные причины его присутствия в спектрах.

Поскольку спектры $R(\omega)$ и $\sigma(\omega)$ исследованного кристалла имеют близкий к металлическому характер, их количественный анализ был проведен нами путем подгонки расчетных спектров к экспериментальным с использованием друдевского выражения для частотной зависимости диэлектрической проницаемости

$$arepsilon(\omega)=arepsilon_{\infty}-\omega_{p}^{2}/\omega(\omega+i\gamma)$$

где ω_p — плазменная частота, ε_{∞} — диэлектрическая проницаемость остова решетки на высоких частотах, γ — постоянная затухания носителей заряда. Следует подчеркнуть, что точную подгонку спектров отражения удается провести только в узкой области плазменного края и плазменного минимума: для грани (001) в области 3000-6500 сm⁻¹ для $\mathbf{E} \perp \mathbf{I}$ и в области 3750-6500 сm⁻¹ для $\mathbf{E} \parallel \mathbf{I}$; для грани (100) для $\mathbf{E} \parallel \mathbf{I}$ в области

Таблица 1. Параметры электронной структуры кристалла $(BEDO-TTF)_5[CsHg(SCN)_4]_2$

Поляризация	$\omega_p, \mathrm{cm}^{-1}$	γ, cm^{-1}	ε_{∞}	$\Omega_p, \mathrm{cm}^{-1}$	m^*
$ \mathbf{E} \perp \mathbf{I} (001) \\ \mathbf{E} \parallel \mathbf{I} (001) \\ \mathbf{E} \parallel \mathbf{I} (100) $	8000	2400	2.5	7200	1.0
	7400	3100	3.2	5700	1.6
	6000	2300	3.2	5300	2.4

3000-6000 сm⁻¹. Спектр $\sigma(\omega)$ в области плавного уменьшения σ , 2500-6500 сm⁻¹, достаточно хорошо описывается соответствующей частотной зависимостью Друде. В табл. 1 приведены значения полученных параметров: ω_p , ε_{∞} , γ , а также значения эффективной массы носителей заряда m^* , полученные по выражению $\omega_p^2 = 4\pi ne^2/m^*$ ($n = 0.95 \cdot 10^{21}$ сm⁻³ — концентрация носителей заряда, найденная по рентгеноструктурным данным [13]). В табл. 1 приведены также значения Ω_p , полученные по правилу сумм: $\Omega_p^2 = 8 \int \sigma(\omega) d\omega$. При более низких частотах экспериментальные спектры отклоняются от простой друдевской зависимости с представленными в табл. 1 параметрами.

Следует отметить, что полученные нами значения ω_p для (BEDO-TTF)₅[CsHg(SCN)₄]₂ оказались несколько меньше, чем для сверхпроводника (BEDO-TTF)₂ReO₄(H₂O) ($\omega_p = 9900$ и 7850 сm⁻¹ для двух поляризаций). Этот факт свидетельствует о том, что разрешенные электронные зоны в исследованном нами органическом металле с переходом металл–диэлектрик на основе молекулы BEDO-TTF нескольку у́же, чем в сверхпроводнике на основе той же молекулы.

Как было показано выше, спектры $R(\omega)$ и $\sigma(\omega)$ исследованных нами кристаллов отклоняются от простой зависимости Друде. Полагаем, что одной из причин этого отклонения может быть присутствие нескольких сортов носителей заряда аналогично тому, что наблюдалось для

(BEDO-TTF)₂ReO₄(H₂O) в [10]. Расчеты зонной структуры [17] показали, что это соединение является полуметаллом с перекрывающимися валентной зоной и зоной проводимости, причем валентная зона перекрывается с еще двумя зонами. На его электронные свойства, следовательно, влияют все четыре зоны. Можно полагать, что аналогичное перекрывание зон имеет место и для исследованных нами кристаллов (BEDO-TTF)₅[CsHg(SCN)₄]₂. Мы полагаем, что другой причиной этого отклонения могут быть электронно-колебательные и электронэлектронные взаимодействия в кристаллах.

Как видно из табл. 1, параметры ω_p и γ для **Е** || **I** различны для граней (001) и (100). Обнаруженное нами различие указывает, по-видимому, на зависимость этих параметров и соответствующих спектров $R(\omega)$ (вставка на рис. 2, *a*) от направления волнового вектора **k** в исследуемых квазидвумерных кристаллах.

3.2. Колебательные особенности. В табл. 2 приведены положения колебательных особенностей в спектрах $\sigma(\omega)$ для трех поляризаций падающего света. Отнесение этих особенностей сделано путем сравнения их положения в спектре с частотами нормальных колебаний нейтральной молекулы BEDO-TTF, которые были определены в работе [18] на основании расчета и измерений спектров КР и ИК спектров кристаллов BEDO-TTF. Из табл. 2 видно, что особенности, наблюдаемые для E \perp I (кроме расположенной при 1615 cm⁻¹), находятся на частотах полносимметричных (*a*_g) ВМК, что подтверждает сделанное нами выше заключение о том, что они обусловлены взаимодействием электронной системы с этими колебаниями. Отличие положения полосы при $1615 \,\mathrm{cm}^{-1}$ от частоты $a_g(2)$ ВМК приблизительно на $-40 \,\mathrm{cm}^{-1}$ обусловлено, по-видимому, тем, что катион ВЕDО-ТТГ^{+0.4}е в кристаллах соли имеет более низкую по сравнению с нейтральной молекулой частоту $a_g(2)$

Таблица 2. Положение и отнесение особенностей колебательной структуры в спектрах $\sigma(\omega)$ кристалла (BEDO-TTF)₅[CsHg(SCN)₄]₂

Частота максимумов в спектрах $\sigma(\omega), \mathrm{cm}^{-1}$		Частоты (сm $^{-1}$), симметрия и форма колебаний BEDO-TTF (симметрия D_{2h}) [18]					
E L (001)	E ⊥ I , (001)	$\mathbf{E} \perp (ab)$	Частота (cm^{-1})		Симметрия	Форма колебаний	
- -, (**-)			набл.	расчет			
	1615		1657	1654	$a_{g}\left(2 ight)$	Растяжение С = С фульваленовых колец	
		1594	1647	1647	$b_{1u}(2)$	Та же	
	1450		1445	1454	$a_g(4)$	Деформация CH ₂	
		1375	1374	1393	$b_{2u}(45)$		
		1268	1270	1279	$b_{1u}(29)$	Деформация этиленового фрагмента	
	$ \begin{cases} 1189\\ 1201 \end{cases} $		1196	1203	$a_g(6)$	Колебания С-О-С	
		1178	1170	1169	$a_{u}(14)$	Деформация этиленового	
		1200	1199	1203	$b_{1u}(30)$	фрагмента колебания С-О-С	
954		1005	1015	1014	$b_{1u}(31)$	Смешанные колебания	
	865		865	860	$a_{g}\left(8 ight)$	> шестичленныхколец	
		860	864	861	$b_{1u}(32)$	J BEDO-TTF	

11

ВМК, соответствующую растяжению С = С-связей фульваленовых колец; более сильным взаимодействием этого колебания с электронной системой, о чем свидетельствует уширение этой особенности. Дублетный характер особенности при 1189-1201 ст⁻¹ может быть обусловлен присутствием кристаллически неэквивалентных катионов BEDO-TTF в кристаллах [13]. Обращает на себя внимание также тот факт, что колебательные особенности, обусловленные взаимодействием электронной системы с a_{g} -ВМК, наблюдаются в той поляризации (**E** \perp **I**), где перенос заряда осуществляется перпендикулярно стопкам, когда молекулы расположены боком друг к другу и перенос заряда может изменить симметрию молекулы [19]. Мы полагаем, что некоторое изменение симметрии уменьшает электронно-колебательное взаимодействие в этом соединении, и поэтому имеющиеся в спектрах электронно-колебательные особенности мало интенсивны. В поляризации E || I в спектре заметна только одна полоса при 954 ст⁻¹, которую мы относим к оптически активному колебанию b_{1u} (31). Как видно из рис. 3 и табл. 2, полоса при $1594 \,\mathrm{cm}^{-1}$ в спектре $\mathbf{E} \perp (ab)$, отнесенная нами к колебанию b_{1u} (27), отличается от других полос этого спектра: она сдвинута относительно соответственной полосы BEDO-TTF на 51 сm $^{-1}$ и значительно уширена. Эти особенности определяются теми же причинами, которые были указаны выше для колебания $a_{g}(2)$, также соответствующего растяжению С = С-связей фульваленовых колец.

Таким образом, в результате исследования поляризованных спектров отражения $R(\omega)$ и оптической проводимости $\sigma(\omega)$ нового органического проводника на основе молекулы bis(ethylenedioxi)tetratiafulvalene (BEDO- $TTF_{5}[CsHg(SCN)_{4}]_{2}$ и сравнения полученных спектров со спектрами сверхпроводника (BEDO-TTF)₂ReO₄(H₂O) сделано заключение, что исследованный в данной работе проводник имеет электронную структуру квазидвумерного полуметалла с перекрывающимися электронными зонами. В рамках модели Друде определены ключевые параметры квазидвумерной электронной системы ω_p , $\varepsilon_{\infty}, \gamma, m^*$ и их анизотропия. Обнаружено, что разрешенные электронные зоны у исследованного проводника несколько уже, чем у сверхпроводника на основе той же молекулы. Идентифицированы колебательные особенности в спектрах, возникающие вследствие взаимодействия квазидвумерной электронной системы с полносимметричными (*a_g*) внутримолекулярными колебаниями, а также полосы оптически активных колебаний b_{1u} и b_{2u} молекулы BEDO-TTF.

Авторы выражают благодарность Н.Ф. Картенко и А.С. Колосовой за помощь в ориентации кристалла.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 98-02-18303, 97-03-33686а) и частично гранта Польской академии наук (N 7T08A 003 12).

Список литературы

- J.M. Williams, J.R. Ferraro, R.J. Thorn, K.D. Carlson, U. Geiser, H.H. Wang, A.M. Kini, M.-H. Whangbo. Organic Superconductors (Including Fullerenes): Synthesis, Structure, Properties and Theory. Prentice Hall: Englewood Cliffs, NJ (1992). 367 p.
- [2] R.B. Lyubovskii, R.N. Lyubovskaya, O.A. Dyachenko. J. Phys. I (France) 6, 1609 (1996).
- [3] A. Graja. Condensed Matter News 3, 14 (1994).
- [4] N.D. Kushch, L.I. Buravov, A.G. Khomenko, E.B. Yagubskii, L.P. Rozenberg, R.P. Shibaeva. Synth. Met. 53, 155 (1993).
- [5] T. Suzuki, H. Yamochi, G. Srdanov, K. Hinkelmann, F. Wudl. J. Am. Chem. Soc. 111, 3108 (1989).
- [6] F. Wudl, H. Yamochi, T. Suzuki, H. Isotalo, C. Fite, H. Kasmai, L. Liou, G. Srdanov, J. Am. Chem. Soc. **112**, 2461 (1990).
- [7] K. Yamaji. Solid State Commun. 61, 7, 413 (1987).
- [8] S. Kahlich, D. Schwetzer, I. Heinen, Song En Lan, B. Nuber, H.J. Keller, K. Winzer, H.W. Helgerg. Solid State Commun. 80, 191 (1991).
- [9] L.I. Buravov, A.G. Khomenko, N.D. Kushch, V.N. Laukhin, I.A. Shchegolev, E.B. Yagubskii, L.P. Rozenberg, R.P. Shibaeva. J. Phys. I (France) 2, 529 (1992).
- [10] W. Sommer, J. Moldenhauer, D. Schweitzer, I. Heinen, H.J. Keller. Synthetic Metals 68, 133 (1995).
- [11] R. Swietlik, N.D. Kushch. Phys. Stat. Sol. (a) 142, 515 (1994).
- [12] R.N. Lyubovskaya, E.I. Zhilyaeva, S.A. Torunova, O.A. Bogdanova, S.V. Konovalikhin, O.A. Dyachenko, R.B. Lyubovskii. Synthetic Metals 85, 1581 (1997).
- [13] E.I. Zhilyaeva, O.A. Bogdanova, R.N. Lyubovskaya, R.B. Lyubovskii, K.A. Lyssenko, M.Yu. Antipin. Synth. Met. 99, 169 (1999).
- [14] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Е.И. Жиляева, Р.Н. Любовская, Э.Б. Ягубский. ФТТ 41, (1999).
- [15] Л.Н. Булаевский, Ю.А. Кухаренко. ФТТ 14, 8, 2401 (1972).
- [16] Р.М. Власова, О.О. Дроздова, В.Н. Семкин, Н.Д. Кущ, Э.Б. Ягубский. ФТТ 35, 3, 795 (1993).
- [17] S. Kahlich, D. Schweitzer, C. Rovira, J.A. Paradis, M.-H. Whangbo, I. Heinen, H.J. Keller, B. Nuber, P. Bele, H. Brunner, R.P. Shibaeva. Z. Phys. B94, 39 (1994).
- [18] K.I. Pokhodnia, M.E. Kozlov, V.G. Onischeko, D. Schweitzer, J. Moldennhauer, R. Zamboni. Synth. Met. 55–57, 2364 (1993).
- [19] M.G. Kaplunov, R.N. Lyubovskaya. J. Phys I (France) 2, 1811 (1992).