07 Зондирование случайного фазового объекта сфокусированным пространственно-модулированным

лазерным пучком. Метод интегрального сканирования

© В.П. Рябухо, А.А. Чаусский, А.Е. Гриневич

Институт проблем точной механики и управления РАН, Саратов Саратовский государственный университет

Поступило в Редакцию 16 апреля 1999 г.

В телескопической системе с освещающим пространственно модулированным лазерным пучком, рассеивателем во входной плоскости и случайным фазовым экраном в пространственно-частотной плоскости рассмотрен процесс формирования интерференционных полос средней интенсивности в плоскости изображения рассеивателя. Показано, что система может работать в режиме интерферометра сдвига при независимости контраста полос от характеристик рассеивателя. Получены аналитические выражения для контраста полос от параметров экрана и освещающего пучка, установлено влияние статистической анизотропии экрана на контраст полос.

В [1–3] установлена возможность определения параметров фазовых неоднородностей объекта, удовлетворяющего модели "случайный фазовый экран" [4–5], с помощью зондирующего пространственномодулированного лазерного пучка (ПМЛП), сфокусированного на поверхность экрана. Для наблюдения интерференционных полос средней интенсивности, несущих информацию о параметрах неоднородностей, в [1–3] предполагалось движение объекта или неоднородностей относительно зондирующего ПМЛП. Эквивалентное усреднение реализуется при сканировании лазерным пучком по объекту. В настоящей работе рассматривается альтернативный способ получения полос средней интенсивности при неподвижных объекте и зондирующем ПМЛП. Способ заключается в одновременном зондировании объекта множеством одинаковых сфокусированных ПМЛП, получаемых с помощью первичного,

5

Рис. 1. Телескопическая схема измерительной системы с освещающим пространственно-модулированным лазерным пучком, рассеивателем во входной плоскости и контролируемым объектом в пространственно-частотной плоскости. SMLB — освещающий пространственно-модулированный лазерный пучок с параллельными интерференционными полосами; L_1 , L_2 — собирающие линзы; S_1 — рассеиватель в передней фокальной плоскости линзы L_1 ; S_2 — контролируемый объект в задней фокальной плоскости линзы L_1 ; S_1' — изображение рассеивателя S_1 .

вспомогательного рассеивателя, выполняющего роль нерегулярной дифракционной решетки.

Оптическая схема представлена на рис. 1. В отсутствие рассеивателя S_1 объект S_2 освещается сфокусированным ПМЛП и для наблюдения полос средней интенсивности необходимо поперечное смещение объекта [1–3]. Рассеиватель S_1 мультиплицирует ПМЛП — дифракционное поле за ним можно представить в виде множества ПМЛП, распространяющихся по разным направлениям и одновременно зондирующих объект S_2 . Дифракционные картины от этих пучков в результате некоррелированного сложения в изображении рассеивателя S_1 образуют полосы средней интенсивности.

Процесс формирования интерференционных полос в изображении S'_1 допускает и другую интерпретацию, более удобную для формального анализа. Действительно, поскольку рассеиватель S_1 освещается двумя волнами с отличающимися на угол θ направлениями распространения, то за ним формируются два идентичных спекл-поля, распространяющих-ся под углом θ друг к другу [6]. В задней фокальной плоскости линзы L_1 поля приобретут поперечный сдвиг $\rho_0 = \theta f = \lambda f / \Lambda$, где Λ — период полос в ПМЛП. Из-за этого сдвига спекл-поля за объектом S_2 станут частично декоррелированными и в плоскости изображения, где сдвиг

полей опять станет равным нулю, произойдет уменьшение контраста полос средней интенсивности. Следовательно, контраст полос должен определяться модулем нормированной функции корреляции $B_{12}(\boldsymbol{\zeta}, \boldsymbol{\rho}_0)$ интерферирующих полей $U_1(\boldsymbol{\zeta})$ и $U_2(\boldsymbol{\zeta})$ в плоскости изображения:

$$V = V_0 \left| \frac{B_{12}(\boldsymbol{\zeta}, \boldsymbol{\rho}_0)}{B_{12}(\boldsymbol{\zeta}, \boldsymbol{\rho}_0 = 0)} \right|, \quad B_{12}(\boldsymbol{\zeta}, \boldsymbol{\rho}_0) = \langle U_1(\boldsymbol{\zeta}) U_2^*(\boldsymbol{\zeta}) \rangle, \quad (1)$$

где V₀ — контраст полос в освещающем рассеивателе S₁ ПМЛП; угловые скобки обозначают операцию статистического усреднения.

Пусть рассеиватель S₁ и объект S₂ — случайные фазовые экраны с функциями пропускания $t_1(\mathbf{r})$ и $t_2(\boldsymbol{\rho})$. Тогда, используя два последовательных фурье-преобразования и полагая, что все рассеянное поле попадает в апертуры линз, для $U_1(\boldsymbol{\zeta})$ можно записать

$$U_{1}(\boldsymbol{\zeta}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_{0}(\mathbf{r}) \exp(i\mathbf{k}_{1}\mathbf{r})t_{1}(\boldsymbol{\rho}_{1})$$
$$\times \exp\left(i\frac{k}{f}\mathbf{r}\boldsymbol{\rho}\right)t_{2}(\boldsymbol{\rho})\exp\left(i\frac{k}{f}\boldsymbol{\zeta}\boldsymbol{\rho}\right)d^{2}\mathbf{r}d^{2}\boldsymbol{\rho}, \qquad (2)$$

где $U_0(\mathbf{r})$ — комплексная амплитуда одной из волн в ПМЛП, \mathbf{k}_1 — волновой вектор этой волны. Выражение для $U_2(\boldsymbol{\zeta})$ имеет аналогичный вид с заменой вектора \mathbf{k}_1 на \mathbf{k}_2 , причем $|\Delta \mathbf{k}_{12}| = |\mathbf{k}_1 - \mathbf{k}_2| = k2 \sin(\theta/2)$.

Подстановка (2) для $U_1(\zeta)$ и $U_2(\zeta)$ в (1), замена порядка выполнения интегрирования и усреднения, учет независимости случайных функций $t_1(\mathbf{r})$ и $t_2(\rho)$ приводят к следующему выражению для функции корреляции комплексных амплитуд полей в плоскости изображения:

$$B_{12}(\boldsymbol{\zeta}, \Delta \mathbf{k}_{12}) = \int_{-\infty}^{\infty} \langle I_f(\boldsymbol{\rho}) \rangle d^2 \boldsymbol{\rho} \int_{-\infty}^{\infty} B_f\left(\Delta \boldsymbol{\rho} + \frac{f}{k} \Delta \mathbf{k}_{12}\right) \\ \times \mu_{t2}(\Delta \boldsymbol{\rho}) \exp\left(-i\frac{k}{f} \boldsymbol{\zeta} \Delta \boldsymbol{\rho}\right) d^2 \Delta \boldsymbol{\rho}, \tag{3}$$

где $\langle I_f(\boldsymbol{\rho}) \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mu_{t1}(\Delta \mathbf{r}) \exp(i\frac{k}{f}\Delta \mathbf{r}\boldsymbol{\rho}) d^2 \Delta \mathbf{r}$ — средняя интенсивность в задней фокальной плоскости линзы L_1 (пространственный спектр рессеивателя S_1); функция $B_f(\Delta \boldsymbol{\rho}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_0(\mathbf{r}) \times I_0(\mathbf{r})$

× exp $(i_f^k \Delta \rho \mathbf{r}) d^2 \mathbf{r}$ — автокорреляционная функция поля, освещающего объект S₂; $I_0(\mathbf{r}) = |U_0(\mathbf{r})|^2$ — средняя интенсивность в ПМЛП; $\mu_{t1}(\Delta \mathbf{r})$, $\mu_{t2}(\Delta \rho)$ — нормированные автокорреляционные функции коэффициентов пропускания $t_1(\mathbf{r})$ и $t_2(\rho)$ рассеивателя S₁ и объекта S₂.

Подстановка (3) в (1) показывает, что контраст полос не зависит от $\langle I_f(\boldsymbol{\rho}) \rangle$ и от $\mu_{t1}(\Delta \mathbf{r})$, то есть не зависит от свойств рассеивателя S₁.

При достаточно большой апертуре освещающего ПМЛП, при которой ширина функции $B_f(\Delta \rho)$ существенно меньше ширины функции $\mu_{t_2}(\Delta \rho)$, так что $B_f(\Delta \rho)$ можно заменить δ -функцией, выражение для контраста полос принимает исключительно простой вид

$$V = V_0 \mu_{t_2} \left(\rho_0 = \frac{f}{k} \Delta \mathbf{k}_{12} \right).$$
(4)

Контраст определяется нормированной функцией корреляции граничного поля за объектом в зависимости от величины и направления взаимного сдвига ρ_0 , т.е. от периода Λ и ориентации полос в ПМЛП. Таким образом, рассматриваемая схема работает в режиме интерферометра сдвига с зависимостью контраста полос от статистической анизотропии объекта.

При произвольной апертуре 2W освещающего ПМЛП аналитическое выражение для контраста полос удается получить при следующих предположениях: распределение интенсивности $I_0(\mathbf{r})$ имеет гауссову форму, $I_0(\mathbf{r}) = I_0 \exp(-2\mathbf{r}^2/W^2)$; неоднородности объекта подчиняются нормальной статистике, а их коэффициент корреляции $K_{\phi}(\Delta \rho)$ имеет гауссову форму, $K_{\phi}(\Delta \rho) = \exp(-\Delta \rho^2/l_{\phi}^2)$, где l_{ϕ} — радиус корреляции неоднородностей. Тогда для μ_{l_2} ($\Delta \rho$) применимо приближение [2] $\mu_{l_2}(\Delta \rho) \approx (1 - \exp(-\sigma_{\phi}^2)) \exp(-\Delta \rho^2/\rho_{\perp}^2) + \exp(-\sigma_{\phi}^2)$, где σ_{ϕ}^2 — дисперсия фазовых флуктуаций, а $\rho_{\perp} = l_{\phi}[-\ln\{\sigma_{\phi}^{-2}\ln[\exp(-1)(\exp(\sigma_{\phi}^2)-1)+1]\}]^{1/2}$ — радиус корреляции поля за объектом $S_2(\rho_{\perp} \approx l_{\phi})$, для $\sigma_{\phi} \leq 1$, $\rho_{\perp} \approx l_{\phi}/\sigma_{\phi}$ для $\sigma_{\phi} > 1$).

Учет этих приближений в (3) позволяет получить для контраста полос (1) в параксиальной области изображения $\boldsymbol{\zeta} = 0$ следующее выражение:

$$V = V_0 \frac{\mu_0 + (1 - \mu_0)\rho_{\perp}^2 (\rho_{\perp}^2 + \rho_f^2)^{-1} \exp\left[-\rho_0^2 / (\rho_{\perp}^2 + \rho_f^2)\right]}{\mu_0 + (1 - \mu_0)\rho_{\perp}^2 (\rho_{\perp}^2 + \rho_f^2)^{-1}}, \quad (5)$$

где $\mu_0 = \exp(-\sigma_{\phi}^2)$, $\rho_f = \sqrt{2}\lambda f/\pi W$ — радиус корреляции поля, совещающего объект S₂. Отметим, аналогичное выражение для

Рис. 2. Контраст интерференционных полос средней интенсивности в изображении рассеивателя. a — в зависимости от периода полос Λ в освещающем пучке для объекта с $\sigma_{\phi} = 1.15$ и $l_{\phi} = 17 \,\mu\text{m}$ при различных значениях апертуры 2W пучка и соответственно различных значениях радиуса корреляции зондирующего объект поля ρ_f при $f = 110 \,\text{mm}$. $I - 2W = 3 \,\text{mm}$, $\rho_f = 20.8 \,\mu\text{m}$; $2 - 2W = 5 \,\text{mm}$, $\rho_f = 12.5 \,\mu\text{m}$; $3 - 2W = 12 \,\text{mm}$, $\rho_f = 5.2 \,\mu\text{m}$; b — в зависимости от апертуры пучка при различных значениях периода полос: $I - \Lambda = 8 \,\text{mm}$, $2 - \Lambda = 5.5 \,\text{mm}$, $3 - \Lambda = 3 \,\text{mm}$.

контраста полос получается при использовании одиночного ПМЛП, сфокусированного на поверхность движущегося объекта, при равенстве $\rho_f = \sqrt{2}w_0$, где w_0 — радиус перетяжки сфокусированного гауссова пучка. При достаточно малом периоде полос Λ , когда $\rho_0^2 > \rho_{\perp}^2 + \rho_f^2$, исчезает зависимость контраста полос от статистической анизотропии объекта.

Теоретические результаты с достаточно высокой точностью согласуются с экспериментальными. На рис. 2 приведены экспериментальные точки и теоретические графики, полученные с использованием (5), относительного контраста полос V/V_0 в зависимости от периода полос Λ и апертуры 2W освещающего ПМЛП.

Формирование изображения интерференционных полос в схеме на рис. 1 может быть также рассмотрено с позиций классического анализа линейных оптических систем [5]. Однако используемый в работе подход более нагляден с физической точки зрения, позволяет установить аналогии с процессами формирования интерференционных картин в схемах с одиночным зондирующим ПМЛП [1–3]. Следует также отметить, что полученные результаты могут быть распространены и на оптические системы формирования изображения более общего вида.

Работа выполнена при поддержке гранта РФФИ № 96-15-96389. Программа "Ведущие научные школы РФ".

Список литературы

- [1] Рябухо В.П., Чаусский А.А. // Письма в ЖТФ. 1995. Т. 21. В. 16. С. 57-62.
- [2] Рябухо В.П., Чаусский А.А. // Письма в ЖТФ. 1997. Т. 23. В. 19. С. 47-53.
- [3] Рябухо В.П., Чаусский А.А. // Письма в ЖТФ. 1999. Т. 25. В. 1. С. 56-61.
- [4] Рытов С.М., Кравцов Ю.А., Татарский Б.И. Введение в статическую радиофизику.Ч. 2. Случайные поля. М.: Наука, 1978. 464 с.
- [5] Гудмен Дж. Статистическая оптика / Пер. с англ. М.: Мир, 1988. 528 с.
- [6] Рябухо В.П., Аветисян Ю.А., Суманова А.Б. // Оптика и спектроскопия. 1995. Т. 79. В. 2. С. 299–306.