01;05 Об особенностях откольного разрушения при взаимодействии нелинейных волн со свободной поверхностью монокристалла меди

© К.П. Зольников, Т.Ю. Уваров, А.Г. Липницкий, Д.Ю. Сараев, С.Г. Псахье

Институт физики прочности и материаловедения СО РАН, Томск

Поступило в Редакцию 9 июля 1999 г.

Методом молекулярной динамики исследовано взаимодействие уединенных импульсов сжатия со свободной поверхностью (100) и (110) в монокристаллите меди. Показано, что при этом может происходить откольное разрушение. Определены параметры импульсов сжатия, приводящих к откольным процессам.

Изучение поведения материала в условиях высокоэнергетического импульсного воздействия является важной задачей физики конденсированного состояния [1–3]. Высокоскоростное механическое нагружение, облучение потоками ионов и высокоэнергетическими пучками электронов могут приводить к тому, что закачанная в материал энергия будет распространяться в нем в виде нелинейных уединенных волн [4,5]. Взаимодействие солитонообразных волн со свободной поверхностью сопровождается растягивающими напряжениями, которые могут привести к так называемому откольному разрушению. Напряжения откола по своим значениям всегда превышают соответствующие значения при статическом нагружении материала [3,6]. Нужно отметить, что и сам характер разрушения при динамическом нагружении существенно отличается от разрушения при статических испытаниях.

Несмотря на многочисленность экспериментов и методик измерения откольных процессов, все же имеется значительный разброс в полученных данных, а в некоторых случаях даже и противоречивость [6]. Трудности экспериментальных исследований связаны прежде всего с быстротечностью явления. В этой связи весьма полезным может оказаться молекулярно динамическое моделирование поведения материала.

22

С этой целью в настоящей работе были поставлены задачи по исследованию анизотропии откольных явлений в монокристалле меди при взаимодействии уединенных нелинейных волн с поверхностью.

Расчеты проводились на основе метода молекулярной динамики [4,5,7] с использованием межатомных потенциалов взаимодействия, рассчитанных в рамках метода погруженного атома [8,9]. Используемые в работе потенциалы позволяют с хорошей степенью точности описывать многие свойства свободных поверхностей для различных кристаллографических плоскостей, включая свойства вицинальных поверхностей (атомную структуру [9], энергии образования и миграции точечных дефектов [10] и фононные спектры [11]).

Моделировался кристаллит меди, имеющий идеальную структуру ГЦК и содержащий более 12000 атомов. Кристаллит строился в виде параллелепипеда, вытянутого вдоль направления нагружения.

Граничные условия выбирались следующим образом. Со стороны нагружения задавалось жесткое граничное условие, а с противоположной стороны – свободная поверхность. Вдоль направлений, перпендикулярных направлению приложения нагрузки, использовались периодические граничные условия.

Исследовалось взаимодействие распространяющегося возмущения со свободными поверхностями (100) и (110). Такой выбор был обусловлен различной степенью поджатия приповерхностных атомных плоскостей (для направления (100) для последних двух плоскостей оно составляет 1.2%, а для (110) 4.5%). Для моделирования внешнего нагружения атомам образца из области захвата выбранной грани присваивалась постоянная скорость вдоль исследуемого направления в течение 9.7 $\cdot 10^{-16}$ s, что составляло $\sim 2-3\%$ от общего расчетного времени. Скорость нагружения варьировалась в пределах: для [100] — от 1600 до 4300 m/s, а для [110] — от 1400 до 2200 m/s.

В результате нагружения в материале формируется один или несколько уединенных импульсов сжатия (рис. 1, a), которые характеризуются плоским фронтом и распространяются в материале без изменения формы и амплитуды. Ширина импульсов может меняться от 3 до 8 межплоскостных расстояний и зависит от его амплитуды и кристаллографического направления. Так, с увеличением амплитуды его ширина уменьшается. Как показано в работе [12], энергия такого импульса переносится вдоль направления нагружения в баллистическом режиме (без рассеяния).

Рис. 1. Положения импульсов сжатия, инициированных высокоскоростным нагружением в меди. *а* — внутри кристаллита, *b* — после откола; *n* — номер атомной плоскости, *V* — атомная скорость.

Зависимость	скорости	распространения	импульса	в	образце	от	амплитуды
и кристаллографического направления							

Направление	Амплитуда A, m/s	Скорость в образце V, m/s				
	650	4750				
	890	4800				
	1350	5010				
100	1790	5450				
	2660	6100				
	3100	6850				
	4100	7760				
	720	6000				
	830	6180				
	1110	6540				
110	1610	7360				
	1850	7630				
	2180	7990				

Для исключения фоновых возмущений в настоящей работе задавалось распределение начальных смещений и скоростей атомов, при котором формируется одиночный импульс сжатия.

Вследствие анизотропии вдоль различных направлений при одинаковых нагружениях вдоль направлений [100] и [110] формируются импульсы с различными амплитудами. Например, при скорости нагружения 1600 m/s вдоль направления [100] формируется импульс с амплитудой 1500 m/s, а вдоль [110] — 2200 m/s. Отметим также, что отличаются и скорости распространения импульсов вдоль данных направлений (см. таблицу).

Расчеты показали, что откольные процессы начинаются на свободных поверхностях, если амплитуда уединенного импульса сжатия больше порогового значения: 1500 m/s для направления [100] и 1700 m/s для направления [110]. Вследствие плоского фронта импульса сжатия при амплитудах выше порогового значения от образца начинают отрываться одна или несколько атомных поверхностных плоскостей. Для направления [110] в исследуемом интервале нагружений от свободной поверхности происходил отрыв двух последних атомных плоскостей

Рис. 2. Зависимость скорости (V) отколовшейся части кристаллита от амплитуды (A) импульса сжатия для направления [100].

как единого целого. Для направления [100] при относительно низком нагружении отрываетсая одна последняя плоскость, а при повышении амплитуды происходит откол еще одной плоскости (рис. 1, *b*).

При росте амплитуды откалывающего импульса скорость отлета заметно возрастает для обоих направлений и приближается к скорости распространения импульса в материале (рис. 2). Это приводит к увеличению доли энергии, уносимой отколовшимися плоскостями.

Таким образом, в настоящей работе показано, что откольные процессы в монокристаллитах меди имеют существенно анизотропный характер. Он проявляется прежде всего в различии пороговых значений откалывающих напряжений, в количестве откалываемых атомных плоскостей и скоростях отлета отколовшихся частей. Поскольку, как показано в [12,13], высокоэнергетическое воздействие на поверхность материала приводит к формированию уединенных импульсов сжатия, то

следует ожидать, что обнаруженный в данной работе эффект приведет к наноскопическому отколу с тыльной поверхности образца. Таким образом, описанный наноскопический откол может иметь место при ионной имплантации, облучении высокоэнергетическими импульсными сильноточными пучками, а также при радиационном облучении.

Список литературы

- [1] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
- [2] Никифоровский В.С., Шемякин Е.И. Динамическое разрушение твердых тел. Новосибирск: Наука, 1979.
- [3] Бушман А.В., Канель Г.И., Ни А.Л., Фортов В.Е. Теплофизика и динамика интенсивных импульсных воздействий. М.: Черноголовка, 1988.
- [4] Псахье С.Г., Зольников К.П., Коростелев С.Ю. // Письма в ЖТФ. 1995. Т. 21. В. 13. С. 1–5.
- [5] Псахье С.Г., Зольников К.П., Сараев Д.Ю. // ФГВ. 1997. Т. 33. № 2. С. 43– 46.
- [6] Канель Г.И., Разоренов С.В., Уткин А.В., Фортов В.Е. Ударноволновые явления в конденсированных средах. М.: Янус-К, 1996.
- [7] Псахье С.Г., Зольников К.П., Сараев Д.Ю. // Письма в ЖТФ. 1998. Т. 24. В. 3. С. 42–46.
- [8] Foiles S.M., Baskes M.I., Daw M.S. // Phys. Rev. 1986. V. B33. N 12. P. 7983-7991.
- [9] Берч А.В., Липницкий А.Г., Чулков Е.В. // Поверхность. 1994. № 6. С. 23-31.
- [10] Eremeev S.V., Lipnitskii A.G., Potekaev A.I., Chulkov E.V. // Physics of Low-Dimensional Structures. 1997. N 3/4. P. 127–133.
- [11] Русина Г.Г., Берч А.В., Скляднева И.Ю., Еремеев С.В., Липницкий А.Г., Чулков Е.В. // ФТТ. 1996. Т. 38. № 4. С. 1120–1141.
- [12] Зольников К.П., Кадыров Р.И., Наумов И.И., Псахье С.Г., Руденский Г.Е., Кузнецов В.М. // Письма в ЖТФ. 1999. Т. 25. В. 6. С. 12–16.
- [13] Псахье С.Г., Зольников К.П., Кадыров Р.И., Руденский Г.Е., Шаркеев Ю.П., Кузнецов В.М. // Письма в ЖТФ. 1999. Т. 25. В. 6. С. 7–12.