## 06;11;12

# Ненапряженные эпитаксиальные пленки $In_xGa_{1-x}As$ , полученные на пористом GaAs

### © Ф.Ю. Солдатенков, В.П. Улин, А.А. Яковенко, О.М. Фёдорова, С.Г. Конников, В.И. Корольков

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

#### Поступило в Редакцию 9 июля 1999 г.

На пористых подложках GaAs (100) методом жидкофазной эпитаксии выращены эпитаксиальные слои твердых растворов InGaAs. Сравнение составов и толщин этих эпитаксиальных слоев с составами и толщинами слоев, полученных в тех же условиях на обычных монолитных подложках GaAs, дает основание рассматривать кристаллизацию эпитаксиальных слоев на пористых подложках как рост свободных ненапряженных пленок.

Использование в качестве подложек для эпитаксиального наращивания пористых монокристаллов  $A_{III}B_V$  открывает новые возможности для кардинального снижения уровня механических напряжений и плотности кристаллических дефектов релаксационного характера, индуцируемых в гетероэпитаксиальных структурах размерными несоответствиями решеток сопрягаемых материалов [1].

В настоящей работе методом жидкофазной эпитаксии были выращены эпитаксиальные слои твердого раствора  $In_xGa_{1-x}As$  с содержанием InAs до ~ 4% на монолитных (сплошных) и пористых подложках GaAs. Использовались подложки GaAs *n*-типа проводимости, легированные оловом до концентрации  $(1-2) \cdot 10^{18}$  сm<sup>-3</sup>, ориентированные в плоскости (100). Прослойки пористого материала (5–20  $\mu$ m) на данных подложках получали с помощью электрохимического травления в водных растворах, содержащих HF, по методике, описанной в [1].

Эпитаксиальное выращивание проводилось из раствора-расплава In-Ga-As при температурах начала кристаллизации 710°С. Для подавления процессов первичного подтравливания подложек при контакте с расплавом и проникновения его в объем пористого материала перед приведением в контакт с подложкой первоначально насыщенный расплав переохлаждался на 5-7°С. На рис. 1 приведена фотография

15



**Рис. 1.** Эпитаксиальный слой  $In_xGa_{1-x}As$  на пористой подложке. Фотография сделана на электронном микроскопе: в отраженных электронах (левая часть снимка); в отраженных + вторичных электронах (правая часть снимка).

скола выращенной гетерокомпозиции эпитаксиальный слой  $In_xGa_{1-x}As-$ пористый GaAs. Видно, что при данном типе пор и режиме выращивания расплав не проникает в объем пористого GaAs.

Полученные результаты сведены в таблицу.

Содержание InAs в эпитаксиальных слоях твердых растворов на монолитной  $(x_m)$  и пористой  $(x_p)$  подложках определялось по положению максимума краевой полосы фотолюминесценции при 77 K, а также по данным рентгеноспектрального микроанализа на установке "Comebax" (значения в скобках). На некоторых образцах фотолюминесцентные измерения проводились как на поверхности слоя, так и вблизи границы раздела подложка–слой после стравливания подложки (образцы 4b и 4a соответственно). Толщины слоев ( $h_m$  — на монолитной,  $h_p$  — на пористой подложках) определялись по сколу на оптическом и электронном сканирующем микроскопах.  $h_{rel} = h_p/h_m$  — отношение толщины слоя,

| №<br>опыта | Тип<br>подложки | $x_m, x_p,$<br>mol.%     | $h_m, h_p, \mu m$ | h <sub>rel</sub> | $f \cdot 10^3$ | $h_c, \ \mu \mathrm{m}$ | $\Delta T$ , °C |
|------------|-----------------|--------------------------|-------------------|------------------|----------------|-------------------------|-----------------|
| 1          | Мон.<br>Пор.    | 0.79(0.77)<br>1.08(0.89) | 1.8<br>2.2        | 1.22             | 0.56<br>-      | 80<br>-                 | 0.25            |
| 2          | Мон.<br>Пор.    | 1.46(1.45)<br>1.79(1.71) | 1.3<br>2.2        | 1.69             | 1.05<br>-      | 21<br>-                 | 0.9             |
| 3          | Мон.<br>Пор.    | 2.33<br>2.88             | 1.5<br>3.0        | 2.0              | 1.67<br>-      | 7.4<br>_                | 2.5             |
| 4 a<br>b   | Мон.<br>Мон.    | 3.35<br>3.77             | 2.9               | 1.21             | 2.41           | 3.3                     | 5.8             |
|            | Hop.            | 4.26                     | 3.5               |                  | -              | -                       | -               |

выросшего на подложке пористого GaAs, к толщине слоя, выращенного на монолитной (сплошной) подложке GaAs. f — относительное несоответствие решеток слоя и подложки,  $h_c$  — критическая толщина слоя данного состава (расчет по модели баланса энергий [2]).  $\Delta T$  — расчетная величина минимального переохлаждения, необходимого для начала эпитаксиального роста упругодеформированного слоя твердого раствора, псевдоморфного подложке GaAs (см. ниже).

Связь между составами слоев, выращенных на сплошных  $(x_m)$  и пористых  $(x_p)$  подложках, показана на рис. 2. Там же приведен график расчетной зависимости между равновесными составами свободнорастущего кристалла InGaAs  $(x_f)$  и напряженного эпитаксиального слоя InGaAs  $(x_{st})$  на подложке GaAs (100).

Зависимость  $x_{st}$  от  $x_f$  и соответствующая величина  $\Delta T$  рассчитывались из соображений минимизации избыточной удельной свободной энергии ( $\delta G$ ) системы: исходная фаза, равновесная к твердому раствору In<sub>x</sub>Ga<sub>1-x</sub>As ( $x = x_f$ ), — твердый раствор In<sub>x</sub>Ga<sub>1-x</sub>As ( $x = x_{st}$ ) с тетрагонально искаженной кристаллической решеткой, псевдоморфной в плоскости (100) подложке GaAs [3].

$$\delta G = \left[\frac{RT}{2x_f(1-x_f)} - \Omega\right] \cdot (x_{st} - x_f)^2 + \frac{\lambda_{(100)}N_A a(\Delta a)^2}{4} \cdot x_{st}^2.$$
(1)

Здесь  $\Omega = 15145 \, \text{Дж/моль}$  — параметр взаимодействия в системе InAs–GaAs (в модели регулярного твердого раствора);



**Рис. 2.** Сплошная кривая, рассчитанная по формуле (2), дает связь между составами твердых растворов  $In_xGa_{1-x}As$  в условиях свободного роста  $(x_f)$  и эпитаксиальной кристаллизации в виде слоев, псевдоморфных GaAs (100)  $(x_{st})$ . Экспериментальные точки отражают корреляцию составов для пар слоев  $In_xGa_{1-x}As$ , выращенных в одном процессе из единого расплава на пористой  $(x_p)$  и обычной  $(x_m)$  подложках (см. таблицу); сплошные точки — по данным фотолюминесцентных измерений, полые точки — по данным рентгеноспектрального микроанализа.

 $\lambda_{(100)}$  — приведенный модуль упругости твердого раствора;  $\lambda_{(100)} = C_{11} + C_{12} - 2 \cdot C_{12}^2/C_{11}$ , где  $C_{ij}$  — матричные модули упругости слоя (все численные значения параметров взяты из [4]).  $N_A$  — число Авогадро; a — постоянная решетки твердого раствора;  $\Delta a$  — разница постоянных решетки ненапряженного слоя и подложки; R — универсальная газовая постоянная; T — температура, в К.

Первый член суммы учитывает изменение химической части свободной энергии системы в связи с вариацией состава твердого раствора от равновесного значения. Второй член суммы представляет собой удельную механическую энергию упругонапряженного слоя на подложке GaAs (100). Итак, из формулы (1) получаем:

$$x_{st} = x_f \cdot \left[ \frac{RT - 2\Omega x_f (1 - x_f)}{RT - \Omega x_f (1 - x_f) + \frac{\lambda_{(100)}}{2} N_A a(\Delta a)^2 x_f (1 - x_f)} \right].$$
 (2)

Величину  $\Delta T$  оценивали, использовав зависимость  $x_{st}(x_f)$ , как  $\Delta T = \delta G/R$  (см. таблицу).

Из таблицы видно, что эпитаксиальные слои, выращенные на пористых подложках, систематически имеют большую толщину и большее содержание InAs по сравнению со слоями на обычных подложках GaAs. Для эпитаксиальных слоев, имеющих толщины, значительно меньшие расчетных значений критических толщин начала релаксационного дефектообразования в псевдоморфных пленках, эти различия нарастают с увеличением концентрации InAs. Однако уже при росте на сплошной подложке эпитаксиальных слоев с содержанием InAs более 3% возникают изменения состава в сторону его увеличения к поверхности слоя. При этом уменьшается соотношение толщин слоев на пористой и сплошной подложке. Толщина эпитаксиального слоя, на которой наблюдались эти изменения, сравнима с критической толщиной h<sub>c</sub> для начального состава слоя, рассчитанной в модели баланса энергий [2], и многократно превышает критическую толщину, рассчитанную из условия механического равновесия слоя [5]. Поэтому отмеченные особенности можно объяснить началом процессов релаксации упругих напряжений в слое, растущем на сплошной подложке. Это в свою очередь приводит к снижению уровня свободной энергии кристаллизующегося твердого раствора и повышению эффективного пересыщения на фронте кристаллизации.

Таким образом, достигаемая при жидкофазной эпитаксии близость условий кристаллизации к состоянию межфазного равновесия сделана возможным проявление различий в составах и толщинах эпитаксиальных слоев, термодинамически обусловленных неодинаковостью их упругодеформированного состояния. Характер наблюдаемых различий для слоев  $In_xGa_{1-x}As$ , выращенных из единого раствора на пористых и сплошных подложках, свидетельствует о том, что еще до достижения

критической толщины слоя деформации, возникающие в гетероструктуре, локализуются в объеме пористой подложки, и рост на ней эпитаксиального слоя протекает, практически, как рост свободного, ненапряженного кристалла.

В заключение авторы считают своим приятным долгом выразить благодарность С.И. Трошкову, В.М. Бусову и Т.Б. Поповой за помощь в проведении измерений; Е.Л. Портному — за внимание и помощь в проведении работы.

## Список литературы

- [1] Мамутин В.В., Улин В.П. и др. // Письма в ЖТФ. 1999. Т. 25. В. 1. С. 3-9.
- [2] People R., Bean J.C. // Appl. Phys. Lett. 1985. V. 47. N 3. P. 322–324.; 1986.
  V. 49. N 4. P. 229.
- [3] Воронков В.В., Долгинов Л.М. и др. // Кристаллография. 1977. Т. 22. В. 2. С. 375–378.
- [4] Кузнецов В.В., Москвин П.П., Сорокин В.С. Неравновесные явления при жидкостной гетероэпитаксии полупроводниковых твердых растворов. М.: Металлургия, 1991. 175 с.
- [5] Matthews J.W., Blakeslee A.E. // J. Cryst. Growth. 1974. V. 27. P. 118-125.