05;12 Компонентный состав и деформационные напряжения сегнетоэлектрических пленок титаната бария-стронция

© С.Ф. Карманенко, А.И. Дедык, Н.Н. Исаков, В.И. Сахаров, А.А. Семенов, И.Т. Серенков, Л.Т. Тер-Мартиросян

Электротехнический университет, С.-Петербург Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 14 мая 1999 г.

Исследовано влияние соотношения катионных компонентов и внутренних деформационных напряжений на критическую температуру (T_c) и диэлектрические характеристики сегнетоэлектрических пленок BSTO, выращенных на подложках α -Al₂O₃ [10<u>1</u>2] и LaAlO₃. Применение диагностики обратного рассеяния ионов позволило выявить дефицит бария в поверхностном слое пленок и установить различия в их структурном качестве.

Сегнетоэлектрические пленки (СЭП) являются перспективным объектом для создания на их основе радиоэлектронных устройств, таких как перестраиваемые полосовые фильтры, модуляторы, линии задержки [1,2], а также приборов с управлением скоростью и фазы СВЧ сигнала [3,4]. По сравнению с приборами на основе ферритовых и полупроводниковых элементов аналогичные радиоэлектронные устройства, в которых применяются СЭП, обладают рядом преимуществ, заключающихся в увеличении скорости преобразования СВЧ сигнала, улучшении точности регулировки фазы, в снижении габаритов и стоимости устройства [3,4].

Для применений СЭП в СВЧ диапазоне необходимо, чтобы они обладали высоким значением диэлектрической проницаемости ε и фактора управляемости емкости $K = C(0)/C(U_{\text{max}})$, низким тангенсом угла диэлектрических потерь tg δ и отсутствием гистерезиса на вольтфарадной характеристике (ВФХ). Потому необходим такой материал, который имел бы фазовый переход из параэлектрического состояния в сегнетоэлектрическое при температуре немного ниже рабочей. В этом варианте еще не проявляется эффект спонтанной поляризации, но

50

значение ε приближается к максимуму. Наиболее пригодным для указанных требований материалом является твердый раствор Ba_xSr_{1-x}TiO₃ — BSTO. Для работы при комнатной температуре, в соответствии с фазовой диаграммой [5], следует выбирать состав BSTO, в котором x = 0.5-0.7.

В данной работе исследовалось влияние содержания компонентов и деформационных напряжений в структуре пленок BSTO, выращенных на подложках лейкосапфира (α -Al₂O₃[10<u>1</u>2]- α) и алюмината лантана (LaAlO₃ — LAO), на BФХ и температурные зависимости диэлектрических характеристик.

Для выращивания пленок BSTO применялись технологическая установка типа УРМ 3.279 и ВЧ-генератор ВЧД-2.5 с рабочей частотой 13.56 MHz. В режиме катодного распыления мощность ВЧ-разряда составляла $\sim 500 \,\text{W}$ и плотность тока разряда $3-5 \,\text{mA/cm}^2$. Ha катодном распылительном устройстве, занимавшем нижнее положение относительно держателя подложек, устанавливалась мишень (диаметр $\sim 125\,\mathrm{mm})$ из порошка сегнетоэлектрического материала. Нагрев подложек осуществлялся в результате совместного воздействия резистивного нагревателя и плазмы ВЧ-тлеющего разряда. Температура подложек в процессе осаждения регулировалась в пределах (950-1100) К. Давление смеси газов аргон + кислород (*p*) составляло ~ 10-20 Ра. Скорость роста пленок варьировалась в диапазоне 1.5-2 nm/min. Процесс "in situ" формирования пленки завершался длительным прогревом образцов в атмосфере кислорода. Некоторые пленки BSTO дополнительно отжигались в кислороде при температуре $\sim 1200 \, \text{K}$.

Для исследования структуры и состава полученных пленок применялись методы рентгенодифракционного анализа (РДА) и рассеяния ионов средних энергий (РИСЭ) [6,7]. На рис. 1 представлены рентгеновские дифрактограммы двух пленок, выращенных в одном технологическом процессе на подложках LAO и α . Текстурированные пленки BSTO не содержали примеси конкурирующих фаз и проявляли только рефлексы (k00). Положение рефлексов указывает на различные внутренние напряжения пленок.

Известно, что в ряду твердых растворов BSTO постоянная решетки изменяется линейно от 0.3905 (x = 0) до 0.4040 nm (x = 1) [8,9]. Применявшиеся подложки сильно отличаются по структуре и физико-химическим свойствам. Алюминат лантана обладает структурой перовскита с постоянной решетки 0.535 nm при температуре выше 435°C [10]. Поворот базовой плоскости на 45° изменяет эффективный параметр решетки

4^{*} Письма в ЖТФ, 1999, том 25, вып. 19

Рис. 1. Рентгеновские дифрактограммы пленок ВSTO (рефлексы (200)). *a* — подложка LaAlO₃, *b* — *α*-Al₂O₃.

LAO, который становится равным ~ 0.3800 nm. Переход из кубической в орторомбическую фазу при указанной температуре сопровождается сильным двойникованием, но параметр a_0 кристаллической решетки изменяется незначительно.

Подложка α обладает гексагональной кристаллической структурой, но срез [1102] выводит на поверхность пластины ромб со стороной ~ 0.5140 nm [11], которую можно сопоставить с постоянной решетки ~ 0.3670 nm, при повороте базовой плоскости на 45°. Таким образом, для обоих материалов подложек выращиваемые пленки BSTO обладают напряжениями сжатия. Параметр рассогласования решеток $= 2(a_1 - a_2)/(a_1 + a_2)$, где a_1, a_2 — параметры элементарной È ячейки материала подложки и пленки, для соединения Ba_{0.6}Sr_{0.4}TiO₃ $(a_2 \approx 0.3965 \,\mathrm{nm})$ составляет: $\xi(\alpha) \approx -7.7\%$, $\xi(\text{LAO}) \approx -3.7\%$. Ромбические искажения на поверхности лейкосапфира увеличивают рассогласование с пленкой перовскитного соединения. Следует также учитывать термические коэффициенты расширения материалов (β) и их химическую активность на границе раздела. Коэффициент В уменьшается в следующем ряду материалов: BSTO $\sim 9 \cdot 10^{-6} \, \text{K}^{-1}$, $\alpha \sim 6 \cdot 10^{-6} \, \text{K}^{-1}$, LAO $\sim 1.25 \cdot 10^{-6} \, \text{K}^{-1}$. Структура BSTO/LAO характеризуется сильным различием коэффициентов расширения — более чем в 7 раз по сравнению со структурой BSTO/ α — 1.5 раза. Таким образом, способность сохранять напряжения в структуре BSTO/ α значительно выше, тогда как в структуре BSTO/LAO проявляется тенденция к образованию размерных дефектов в пленке. Высокая плотность двойниковых границ на подложке LAO и существенное различие термических коэффициентов приводят к тому, что напряжения несоответствия в пленке находят стоки в планарные границы, трехмерные дислокация и границы блоков. В пленках BSTO, выращенных на подложках α , благодаря согласованию температурных коэффициентов, лучше обеспечиваются условия для сохранения структурных напряжений внутри кристаллитов. В структурах BSTO/LAO наблюдается даже изменение знака напряжения — от отрицательного для малых толщин пленок LAO до положительного $(\Delta a_0 = a_{01} - a_{00} \approx 0.017 \,\mathrm{nm}, \,\mathrm{cm}. \,\mathrm{таблицy}).$

Проведенный РДА пленок не выявил отклонений в ориентации кристаллитов от направления [100] и отличий в структурной ориентации пленок. Вместе с этим применение диагностики РИСЭ [6,7] позволило установить различия в структурном совершенстве образцов. Исследовались энергетические распределения ионов, рассеянных на угол Θ , после

Рис. 2. Спектры РИСЭ: a — случайный, каналированный режим измерений и относительный выход ионов (образец 0752), b — спектр образца 2231 в случайном режиме при воздействии ионов N⁺E = 230 keV, c — спектр образца 2231 при воздействии ионов H⁺E = 190 keV.

взаимодействия с поверхностью первичного пучка ионов H⁺, He⁺ или N⁺ с начальной энергией 180–230 keV. Для анализа применялся либо электростатический анализатор (ЭСА) с разрешением $\Delta E/E = 0.005$ и $\Theta = 120^{\circ}$, либо полупроводниковый детектор с $\Delta E = 4$ keV и

Рис. 2 (продолжение).

 $\Theta = 150^{\circ}$. Применялись два режима ориентации ионного пучка относительно низкоиндексного направления в кристалле. Измерялся выход ионов в режиме неориентированного пучка $Y_r(E)$ и в режиме каналирования ионов вдоль оси [100] $Y_c(E)$. Для указанных режимов измерялись энергетические спектры и отношение $\chi(E) = Y_c(E)/Y_r(E)$, называемое относительным выходом ионов, минимальная величина которого для приповерхностного слоя характеризовала совершенство кристаллической решетки образцов.

Исследования показали, что на начальной стадии роста пленок на подложках LAO формируется высокоориентированная структура, в которой проявляется эффект каналирования ионов. Самой высокой ориентированностью кристаллитов ($\chi \sim 30\%$) обладали структуры BSTO/LAO при толщине пленки ~ 300 nm. На рис. 2, *а* приведен спектр РИСЭ образца 0752/LAO (см. таблицу) толщиной ~ 400 nm, на котором показан параметр $\chi \sim 35\%$. С возрастанием толщины пленок параметр χ монотонно увеличивался, и на пленке толщиной ~ 750 nm (2251/LAO) $\chi \sim 60\%$. Для пленок BSTO/LAO, обладающих толщиной ~ 2000 nm, эффект каналирования ионов в приповерхностном слое ~ 400 nm полностью отсутствовал.

Шифр/ подложка	1821/ LAO	1815/ α	2251/ LAO	2232/ α	2231/ α	0752/ LAO	0751/ α
Толщина пленки, nm	950	950	750	750	750	400	400
Отжиг	+	+	+	+	—	_	—
Состав мишени х	0.50	0.50	0.55	0.55	0.55	0.60	0.60
Постоянная решетки, <i>a</i> ₀ , nm	0.3972	0.3948	0.3982	0.3960	0.3954	_	_
Относительный минимальный выход, $\chi(E)$,%	80	100	60	100	100	35	100
Температура максимума ε, T_m, K	160	230	245	260	278	260	330
ε (300 K)	1874	2605	3245	2391	1545	2213	3147
tg δ (300 K, 0 V)	0.010	0.004	0.005	0.002	0.011	0.002	0.005
K (300 K)	1.20	1.62	1.40	1.49	2.1	1.45	1.9

Характеристики пленок BSTO

В качестве электродов применялись пленки меди толщиной ~ 0.5 μ m, осажденные на поверхность BSTO в процессе магнетронного распыления. Для измерения диэлектрических характеристик СЭП изготовлялись планарные конденсаторы с применением фотолитографии и химического травления. Для измерения диэлектрических характеристик конденсаторов использовался измеритель E7-12 на частоте 1 MHz. Геометрические размеры планарных конденсаторов определялись в микроскопе: ширина зазора *w* составляла 7–15 μ m, длина $l = 100-1000 \,\mu$ m. Измерения температурных зависимостей емкости и tg δ проводились в интервале 77–400 К. Электрическое смещение на конденсатор подавалось в диапазоне напряжений от +200 до -200 V. Относительное разрешение по емкости и напряжению составляло 5 · 10⁻³, и точность измерения tg δ — 5 · 10⁻⁴. Для расчета диэлектрической проницаемости применялась формула, приведенная в [9,12]. В таблице указаны характеристики ряда исследованных пленок BSTO.

Соотношение компонентов на поверхности пленок определялось на основе спектров РИСЭ, измеренных при воздействии на образец ионов N⁺ с энергией ~ 230 keV. Точность определения формульного соотношения составляла ~ 10 at.%. На рис. 2, *b* приведен спектр для пленки 2231/а (см. таблицу). На основании приведенного спектра было установлено, что содержание компонентов в поверхностном слое толщиной не более 10 nm оптимально соответствует расчетной модели Ba:Sr:Ti:O = 0.07:0.13:0.20:0.60, T.e. значение $x \approx 0.35$. Анализ спектров РИСЭ показал, что содержание компонентов на поверхности и в объеме пленок BSTO было различным. На том же образце $2231/\alpha$ с помощью ионов H⁺ ($\sim 190 \, \text{keV}$) и эталонных образцов был определен коэффициент $x \approx 0.52$ в объеме пленки ($\sim 400 \, {\rm nm}$ в глубь образца от поверхности). На рис. 2, *с* приведен спектр РИСЭ образца $2231/\alpha$, на основе которого был определен состав в объеме образца, который в целом соответствовал исходному составу мишени (см. таблицу).

Следует отметить довольно "размытый" фронт экспериментальных спектров РИСЭ, что может свидетельствовать как о развитом рельефе поверхности, так и об изменяющемся содержании компонентов в приповерхностном слое. Тонкие пленки, выращенные на гладких подложках α (высота рельефа не более 10 nm), отличались хорошим согласованием расчетного и экспериментального спектров. В результате отжига пленок спектр РИСЭ "размывался" и содержание бария монотонно понижалось при приближении к поверхности по сравнению с не отожженными образцами. Подложки LAO отличались сильным поверхностным рельефом (\sim 50 nm). Однако спектры РИСЭ тонких неотожженных пленок BSTO/LAO не имели существенного различия с аналогичными спектрами для BSTO/ α структур.

В таблице приведена T_m , которая соответствует критической температуре перехода из параэлектрического в сегнетоэлектрическое состояние T_c . В рассматриваемом диапазоне изменения состава (x = 0.5-0.6) значение T_m изменяется от 160 К (1821/LAO) до 330 К (0751/ α). Отжиг пленок BSTO/ α приводит к понижению T_m на 15–20 К. Отмеченный эффект сопровождается увеличением параметра решетки и, вероятно, обусловлен понижением уровня внутренних деформационных напряжений в пленке.

На рис. 3 в качестве примера приведена ВФХ и зависимость tg δ от приложенного напряжения смещения U для планарного конденсатора, изготовленного на основе образца 2251/LAO. По измеренным ВФХ

Рис. 3. Вольт-фарадная характеристика и зависимость tg δ от приложенного напряжения для планарного конденсатора.

определялся коэффициент управляемости конденсатора *K*, значения которого приведены в таблице. В целом достигнутые в данной работе диэлектрические характеристики пленок вполне удовлетворяют требованиям радиоэлектроники.

В качестве выводов по работе отметим следующие результаты. Поверхность пленок BSTO имеет дефицит бария по сравнению с его содержанием в глубине образца, что показали спектры РИСЭ. Монотонное выравнивание поверхностного и объемного уровней Ва происходит в слое толщиной ~ 50 nm. Высокотемпературный отжиг пленок способствует снижению содержания бария на поверхности пленок BSTO, что может быть объяснено высокой летучестью комплексов ВаО. Аналогичный эффект снижения поверхностной концентрации бария наблюдался в процессе магнетронного распыления и осаждения пленок YBaCuO на подложки, подвергавшиеся интенсивному воздействию плазмы тлеющего разряда [13].

Разделение физических механизмов, оказывающих влияние на значение T_m , представляет сложную исследовательскую задачу, требующую привлечения комплекса диагностических методов. Вероятно, на параметр T_m в текстурированных пленках BSTO влияют следующие основные факторы: соотношение катионных компонентов Ba/Sr (значение коэффициента x); содержание кислорода (концентрация кислородных вакансий в структуре перовскита); внутренние деформационные напряжения, обусловленные несоответствием структуры пленки и подложки.

Было установлено, что значение T_m в пленках идентичного состава, выращенных на различных подложках, может отличаться на десятки градусов. Более сильное влияние на параметр T_m оказывает не соотношение Ba/Sr, а значение постоянной решетки a_0 в структуре перовскита. Частичная релаксация внутренних напряжений в пленках BSTO/ α , достигнутая при отжиге в кислороде, может изменять a_0 и T_m на 15–20 К. Подобный эффект не проявлялся на пленках BSTO/LAO, поскольку в данной структуре не образуются достаточные условия для создания сильных деформационных напряжений (несоответствие структуры и разница термических коэффициентов).

Таким образом, при выборе состава мишени в технологических процессах выращивания пленок BSTO, предназначенных для применения в радиоэлектронных устройствах при комнатной температуре, необходимо учитывать внутренние деформационные напряжения и проводить соответствующую корректировку. Для подложек α следует выбирать

мишень со значением коэффициента $x \approx 0.55$, тогда как для подложек LAO требуется ориентировочный состав, в котором коэффициент $x \approx 0.60-0.65$.

Список литературы

- [1] *Findikoglu A.T., Jia Q.A., Campbell I.H.* et al. // Appl. Phys. Lett. 1995. V.66. N 26. P. 3674–3676.
- [2] Carlson E., Gevorgian S. // Electronics Lett. 1997. V. 33. N 2. P. 145-148.
- [3] Vendik O.G., Mironenko I.G., Ter-Martirosyan L.T. // Microwave and RF. 1994.
 V. 33. N 7. P. 67–70.
- [4] Sengupta L.C., Sengupta S. // Ferroelectricity Newsletters. 1996. N 1-4. P. 4-7.
- [5] Леманов В.В., Смирнова Е.П., Тараканов Е.А. // ФТТ. 1995. Т. 37. В. 8. С. 2476–2480.
- [6] Karmanenko S.F., Belousov M.V., Davydov V.Ju. et al. // Supercond. Sci. Technol. 1993. V. 6. N 1. P. 23–29.
- [7] Афросимов В.В., Ильин Р.Н., Карманенко С.Ф., Сахаров В.И., Серенков И.Т., Семенов А.А., Яновский Д.В. // ФТТ. 1999. Т. 14. В. 4. С. 588–596.
- [8] Вендик О.Г., Ильинский Л.С., Смирнов А.Д., Хижа Г.С. // ЖТФ. 1984. Т. 54. В. 4. С. 772–777.
- [9] Сегнетоэлектрики в технике СВЧ / Под ред. О.Г. Вендика. М.: Сов. радио, 1979. 172 с.
- [10] Geller S., Bala V.B. // Acta Crystallogr. 1956. V. 9. N 12. P. 1019-1025.
- [11] Акустические кристаллы / Под ред. М.П. Шаскольской. М.: Наука, 1982. 630 с.
- [12] Dedyk A.I., Karmanenko S.F., Leppavuori S. et al. // J. Phys. IV France. 1998.
 V. 8. Pr9-217- Pr9-220.
- [13] Карманенко С.Ф., Митрофанов А.П., Някшев К.Ф., Чакалов Р.А. // ЖТФ. 1995. Т. 65. В. 1. С. 64–69.