06;12

Выращивание нитевидных и пластинчатых кристаллов A³N молекулярно-пучковой эпитаксией с участием жидкой фазы

© В.В. Мамутин

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 26 мая 1999 г.

Показана возможность выращивания нитевидных и пластинчатых кристаллов InN и GaN молекулярно-пучковой эпитаксией (МПЭ) и исследован механизм их роста на подложках арсенида галлия и сапфира. Проведено сравнение с теорией, доказано, что механизм роста соответствует механизму пар-жидкость-кристалл (ПЖК), и определены параметры процесса кристаллизации. Нанометровые размеры выращенных кристаллов позволяют надеяться на дальнейшее использование их и самого метода роста по ПЖК-механизму для получения МПЭ квантово-размерных объектов (квантовых точек и проволок) в перспективной системе элементов A³B⁵–AlGaInN.

Пространственное ограничение носителей в низкоразмерных структурах (квантовые ямы, проволоки, точки) приводит к специфическим свойствам таких структур и вызывает большой интерес применительно к полупроводниковым приборам (лазеры, фотоприемники, транзисторы, нелинейные переключатели и т.д.). Получение таких структур связано или с их самоорганизацией, или со специфической самоориентацией при росте. Если процессы самоорганизации изучались во многих работах последнего времени [1–3], то направленный рост низкоразмерных кристаллов (нитевидных, пластинчатых, полых) после открытия его механизма [4] несколько отошел в тень, хотя размеры получаемых объектов близки к получаемым в последние годы (нанометровый и субнанометровый диапазон) такими методами, как молекулярно-пучковая эпитаксия (МПЭ).

До настоящего времени не было сообщений о росте таких кристаллов в высоком вакууме, при котором осуществляется МПЭ. Для их роста был предложен и подтвержден механизм, названный "пар-жидкостькристалл" (ПЖК) (Vapor-Liquid-Solid-VLS) [4]. Процесс надо вести в

55

той области температур и пересыщений, где термодинамически возможная реакция заторможена из-за кинетических ограничений. Практически это может означать, что температура должна быть на $100-200^{\circ}$ С ниже обычной температуры эпитаксии. В ранних работах по росту соединений $A^{3}B^{5}$ из пара нитевидные и дендритные кристаллы образовывались случайно и рассматривались как курьез или нежелательный продукт кристаллизации. После открытия ПЖК-механизма был опубликован ряд работ по преднамеренному росту нитевидных кристаллов соединений $A^{3}B^{5}$ [5,6]. Имеется мало информации об ориентированном росте таких кристаллов, в то время как именно он способствует пониманию самого механизма и открывает путь к практическому использованию нитевидных структур. Кроме того, в литературе по самоорганизующимся процессам совершенно отсутствуют сообщения о росте квантоворазмерных объектов по ПЖК-механизму.

Существенно, что экспериментальные факты, полученные на таких объектах, хорошо вписываются в современные представления о зародышеобразовании, послойном (2D) росте (Layer-by-Layer-механизме), роли примесей в поверхностной кинетике (так называемый "Surfactant"-механизм), росте из жидкой и квазижидкой фазы даже в процессах, предполагающих существование только газовой и твердой фаз, как например МПЭ [7]. На основе использования эффектов поверхностных сил возникает возможность измерять многие параметры процесса, недоступные для измерения в других условиях, для установления самых общих закономерностей роста.

В данной работе впервые проведено выращивание нитевидных и пластинчатых кристаллов A^3B^5 МПЭ в нитридной системе (бинарных соединений InN и GaN, широко исследуемых в настоящее время), сравнение с теорией [8,9] и анализ их механизма роста. Выращивание проводилось в установке МПЭ ЭП-1203 с коаксиальным магнетронным источником азотной плазмы оригинальной конструкции с ВЧ-емкостным возбуждением разряда [10] на подложках GaAs (311), а также и с использованием источника с электронным циклотронным резонансом (ЭЦР) ASTeX (USA) на подложках Al₂O₃ (0001).

Кристаллы изучались с помощью сканирующего электронного микроскопа (СЭМ) CamScan (England). Анализ экспериментальных данных проводился в основном на нитевидных кристаллах InN, дающих наиболее яркую картину нитевидного и пластинчатого роста, когда полностью подавлен обычный планарный рост (возможно, из-за зна-

Рис. 1. СЕМ-фотографии нитевидных и пластинчатых кристаллов InN и GaN: a - GaN/GaAs(311), b - InN/GaAs(311), $c - InN/Al_2O_3(0001)$.

Письма в ЖТФ, 1999, том 25, вып. 18

чительно более низких температур роста: 370-500°С для InN вместо 600-800°С для GaN). Типичные картины СЭМ приведены на рис. 1. Из масштаба, нанесенного на снимках, видно, что размеры нитей могут сильно меняться — от десятков нанометров в диаметре до десятков микрометров в длину.

Если рассматривать возможности существования ПЖК механизма, то очевидно, что для существования жидкой капли металла на поверхности и одновременного роста кристалла под ней должно выполняться равенство потоков, приходящих (J_{ads}) и переиспаренных (J_{des}) : $\Delta J^3 = (J_{ads}^3 - J_{des}^3) = \Delta J^5 = (J_{ads}^5 - J_{des}^5)$. Разумеется, при этом может расти и плоская пленка (2D-рост), если на остальной поверхности искусственно не подавлены условия для этого (например, выбором плоскости сильно пониженной скорости роста, такой как (111) во многих полупроводниках).

Представляются следующие возможности.

1. $\Delta J^3 \gg \Delta J^5$. Капля непрерывно и быстро увеличивается в размерах, а пересыщение (скорость роста) в ней снижается. При значительных снижениях пересыщения рост нитевидного кристалла прекратится. (Индий (A³)-обогащенные условия роста вдали от стехиометрии).

2. $\Delta J^3 \geq \Delta J^5$. Будут расти конические, расширяющиеся к вершине кристаллы из-за медленного увеличения размера капель или медленно увеличивающиеся капли на плоском слое. (А³-обогащенный рост вблизи стехиометрии (А³ : В⁵ \cong 1 : 1)).

3. $\Delta J^3 \leq \Delta J^5$. Будут расти конические, сужающиеся к вершине кристаллы из-за постепенного уменьшения размеров капель. Возможен планарный рост без капель с дефицитом A^3 . (Азот-обогащенный рост вблизи стехиометрии).

4. $\Delta J^3 \ll \Delta J^5$. Капля может исчезнуть или затвердеть в виде поликристалла, если пересыщение превысит критическое, при котором начинается спонтанная кристаллизация. (Азот-обогащенный рост вдали от стехиометрии).

Характерные признаки ПЖК-механизма следующие: 1) отношение длины нити к диаметру: $L/d \ge 10$; 2) квадратичный закон скорости роста от диаметра капли: $V \sim f(1/d^2)$; 3) преимущественный рост в направлении подавленного (сильно заниженного) планарного роста в обычных условиях; 4) огранка боковой поверхности нити (плоскости пластинки); 5) изгибание нитей в определенных кристаллографических направлениях; 6) присутствие на вершине сферообразной жидкой или

Noõp	$L, 10^{-4} \mathrm{cm}$	$V, 10^{-9} \mathrm{cm/s}$	$d, 10^{-4} \mathrm{cm}$	$b, 10^{-7} \mathrm{cm/s}$	$\Delta \mu / kT$
158	0.3	4.2	0.07	1.07	0.199
157	0.6	8.3	0.10	1.06	0.279
243	1.2	16.9	0.30	1.05	0.403
252	2.2	19.6	0.5	1.04	0.430

Основные параметры роста нитевидных кристаллов InN

закристаллизовавшейся частицы (глобулы) (причем отсутствие ее не доказывает отсутствия ПЖК-механизма); 7) двухстадийный рост — быстрый рост нити в длину, затем медленное утолщение (либо рост плоской пластинки на ней) [9]. Все эти признаки наблюдались на наших образцах нитевидных (пластинчатых) кристаллов InN и GaN, выращенных на различных подложках (рис. 1). Из рисунка видно упорядоченное расположение нитей (и капель) вдоль выделенных направлений, а также призматическую огранку нитей, их вершин или пластин — характерный признак ПЖК-механизма [4].

Рост по ПЖК-механизму включает в себя следующие стадии: 1) перенос в газовой фазе, 2) реакцию на поверхности пар-жидкость, 3) диффузию в жидкости, 4) процессы кристаллизации на поверхности жидкость-кристалл. В работе [9] было показано, что лимитирующей стадией процесса является 4 стадия — явления на границе жидкостькристалл. Закон роста заранее неизвестен, но может быть определен из эксперимента [8], а зависимость скорости роста от диаметра нити (капли) выражается следующим образом [9]:

$$\sqrt{V} = (\Delta \mu_0 / kT) \sqrt{b} - (4\Omega \alpha_{\text{IIK}} / kT) \sqrt{b} / d,$$

где $\Delta \mu_0$ — разность химических потенциалов на плоской границе паржидкость (при $d \to \infty$), $\Delta \mu_0/kT$ — эффективное пересыщение в газовой фазе над плоской поверхностью, Ω — удельный объем, α_{nk} — удельная свободная энергия фазовой границы пар-кристалл, k — постоянная Больцмана, T — абсолютная температура, b — кинетический коэффициент кристаллизации для границы жидкость-кристалл (по определению не зависит от пересыщения). В таблице приведены экспериментальные данные для нескольких образцов нитевидных кристаллов InN, выращенных с магнетронным источником, где L — длина нити, d — ее

Рис. 2. Зависимость скорости роста нитевидных кристаллов InN от диаметра нити.

диаметр (измеренные по фотографиям СЭМ), V — ее скорость роста и последние столбцы — вычисленные из зависимости $\sqrt{V} = f(1/d)$ кинетический коэффициент b и пересыщение на фронте кристаллизации $\Delta \mu/kT = \Delta \mu_0/kT - (4\Omega \alpha_{\rm nk}/kT)/d$ [9].

Сама зависимость $\sqrt{V} = f(1/d)$ показана на рис. 2. Кроме указанных в таблице величин из зависимости находится $d_{\text{крит}}$ — значение диаметра капли при данных эффективных пересыщениях, когда реальные пересыщения на границе кристаллизации обращаются в нуль и рост прекращается. Другими словами, значение, ниже которого повышение химического потенциала под искривленной поверхностью (эффект Гиббса– Томсона [9]) полностью останавливает рост при данном пересыщении в газовой фазе. Это значение равно $d = 0.04 \,\mu\text{m}$ (при V = 0). Поскольку в литературе нет данных для InN, предполагалось, что удельная свободная энергия $\alpha_{\text{пк}}$ для InN не сильно отличается от известных из литературы значений для Si (1617 erg/cm²), Ge (1500 erg/cm²) и GaAs (1090 erg/cm²) [9], и бралось значение по порядку величины, как и для соединения A^3B^5 —GaAs (~ 1000 erg/cm²). Наклон зависимости позволяет определить кинетические коэффициенты для всех процес-

сов, пересыщение на фронте кристаллизации $\Delta \mu/kT$ и эффективные пересыщения в газовой фазе $\Delta \mu_0/kT$. Последняя величина составила (для ~ 700 К — средней температуры роста) $\Delta \mu_0/kT = 0.465$, остальные величины приведены в таблице. При этом отношение насыщенного давления в газе над искривленной поверхностью капли (p) и над плоской поверхность (p_0) — собственно эффект Гиббса–Томсона — составило $p/p_0 \sim \exp(4\Omega \alpha_{\rm nk}/kT d_{\rm kp}) \sim 1.6$ [9]. Как и положено, кинетический коэффициент не меняется, являясь феноменологическим параметром, выражающим зависимость процесса от его движущей силы [8].

В заключение, в данной работе впервые проведено выращивание МПЭ нитевидных и пластинчатых кристаллов в системе A^3N и исследован их механизм роста. Показано, что рост происходит по ПЖК-механизму с участием жидкой фазы. Поскольку основные параметры (угол смачивания, коэффициенты внедрения, десорбции и адсорбции) для данной системы элементов сохраняются, то эти результаты применимы и для понимания планарного роста соединений A^3B^5 МПЭ, так как он во многих случаях происходит с участием жидкой или квазижидкой фаз на поверхности [7]. Кроме того, управляемый рост непланарных объектов нанометровых размеров позволяет надеяться на получение в дальнейшем квантовых проволок (точек) в системе A^3N по ПЖК-механизму, открывая дополнительные возможности управления им.

Автор выражает благодарность В.М. Бусову за получение СЭМ-фотографий и продуктивные дискуссии.

Работа проводилась в рамках проекта РФФИ N 99–02–17103 и при частичной поддержке Российского фонда фундаментальных исследований, программы Министерства науки РФ "Физика твердотельных наноструктур".

Список литературы

- Notzel R., Temmyo J., Tamamura T. et al. // Nature. 1994. V. 369. N 56. P. 131–133.
- [2] Yoshizawa M., Kikuchi A., Mori M. et al. // Jpn. J. Appl. Phys. 1997. V. 36. N 43. P. L459–L462.
- [3] Yoshizawa M., Kikuchi A., Fujita N. et al. // Journ. Cryst. Growth. 1998.
 V. 189/190. P. 138–141.

- [4] Wagner R.S., Ellis W.C. // Appl. Phys. Lett. 1964. V. 5. N 4. P. 89-90.
- [5] Поляков С.М., Лаверко Е.Н., Марахонов В.М. // Кристаллография. 1970.
 Т. 15. В. 3. С. 598–600.
- [6] Koguchi M., Kakibyashi H., Yazawa M. et al. // Jpn. J. Appl. Phys. 1992. V. 31.
 N 7. P. 2061–2065.
- [7] Ivanov S.V., Kop'ev P.S., Ledentsov N.N. // Journ. Cryst. Growth. 1991. V. 111.
 P. 151–161.
- [8] Чернов А.А. // Кристаллография. 1971. Т. 16. В. 4. С. 842-849.
- [9] Гиваргизов Е.И., Чернов А.А. // Кристаллография. 1973. Т. 18. В. 1. С. 147– 153.
- [10] Mamutin V.V., Zmerik V.N., Vekshin V.A. et al. // Tech. Phys. Lett. 1998. V. 24. N 6. P. 467–469.