07;12 Лазер на Ті: Al₂O₃ с накачкой излучением лазера на парах меди

© С.В. Кружалов, Ю.М. Мокрушин, В.А. Парфенов

С.-Петербургский государственный технический университет

Поступило в Редакцию 14 мая 1999 г.

Разработана и осуществлена схема, которая позволяет осуществить пространственное согласование излучения лазера на парах меди, используемого для накачки с модой резонатора лазера Al_2O_3 : Ті. Показано, что лазеры на парах меди в качестве источников накачки лазеров на титан-сапфире, вполне способны конкурировать с традиционно используемыми.

Лазеры на титан-сапфире (Al₂O₃:Ti³⁺) остаются одними из самых перспективных для получения излучения в ближней ИК области спектра (680 ÷ 1100 nm), а также в УФ и сине-зеленой области при использовании нелинейного преобразования частоты [1]. Многочисленные работы, посвященные их исследованию, позволили создать источник перестраиваемого излучения с уникальными характеристиками. Титан-сапфировые лазеры могут работать в самых разнообразных режимах — одночастотном, синхронизации мод, с перестройкой частоты — как в импульсном, так и в непрерывном режиме.

Кривая поглощения активной среды этого лазера имеет максимум в районе 500 nm [2], поэтому в большинстве работ для его накачки используют излучение лазеров на аргоне (515, 488 nm) и вторую гармонику АИГ:Nd лазера (532 nm). Немногочисленные работы по когерентной накачке Al₂O₃:Ti лазера с помощью лазера на парах меди [3] не получили дальнейшего развития; достигнутый в них уровень выходной мощности и эффективность заметно уступали аналогичным характеристикам упомянутых выше систем.

На наш взгляд, сложившееся положение не соответствует потенциальным возможностям медных лазеров, поскольку среди коммерческих систем они обеспечивают получение наибольшего уровня средней мощности в видимом диапазоне (до 70 W) при использовании простых источников питания и охлаждения. Импульсно-периодический режим

6

работы, свойственный медным лазерам, способствует высокой скорости накачки активной среды и облегчает выполнение условий генерации.

К факторам, которые могут отрицательно сказаться на эффективности их применения, следует отнести большой диаметр выходного луча, затрудняющий согласование поля накачки и моды резонатора Al₂O₃: Ті лазера, а также наличие в спектре излучения двух разнесенных линий ($\lambda_1 = 510.6$ nm и $\lambda_2 = 578.2$ nm) с сильно отличающимися значениями сечения поглощения $\sigma_1 = 8.3 \cdot 10^{-20}$ cm², $\sigma_2 = 3.8 \cdot 10^{-20}$ cm²).

Целью настоящей работы является разработка схемы, позволяющей осуществить пространственное согласование пучка накачки с модой резонатора Al₂O₃: Ti, а также сравнение эффективности его накачки двумя различными спектральными линиями излучения лазера на парах меди.

Схема экспериментальной установки представлена на рис. 1. В качестве активного элемента A_1 использовалась отпаянная газоразрядная труба типа ГЛ-201. Поляризационная призма P_1 , установленная внутри резонатора, задавала нужную поляризацию излучения. Для уменьшения расходимости излучения медного лазера использовался неустойчивый телескопический резонатор с коэффициентом увеличения $M = R_3/R_1 = 37$, где R_1 и R_3 — радиусы зеркал M_1 и M_3 . Кроме того, на пути пучка, выводящегося из резонатора с помощью плоского зеркала M_2 с отверстием связи, устанавливался обратный телескоп, образованный линзами L_1 и L_2 , в общем фокусе которого помещалась диафрагма D, играющая роль пространственного фильтра. Эти меры привели к снижению расходимости излучения до $3.5 \cdot 10^{-4}$ гаd. Сменные дихроичные зеркала Φ позволяли изменять соотношения между зеленой и желтой компонентами спектра накачки, что требовалось для определения их относительной эффективности.

Медный лазер работал на частоте 15.6 kHz и генерировал световые импульсы длительностью 20 ns. Средняя мощность, измеренная после зеркала M_7 , достигала уровня 7 W при соотношении зеленой и желтой компонент 3/4.

Резонатор титан-сапфирового лазера был выполнен по стандартной Z-образной схеме с компенсацией астигматизма. Активный элемент A_2 из $Al_2O_3:Ti^{3+}$ диаметром 5 и длиною 15 mm с брюстеровскими торцами устанавливался между сферическими зеркалами M_7 и M_8 с радиусами кривизны 10 cm. Пропускание активного элемента составляло $T_{p_1} = 1.8\%$ на длине волны $\lambda_{p_1} = 510.6$ nm и $T_{p_2} = 16.8\%$ при

Рис. 1. Схема экспериментальной установки.

 $\lambda_{p_2} = 578.2$ nm. Расстояния между зеркалами $M_7 - M_{10}$ и $M_8 - M_9$ равнялись 30 cm. Коэффициенты отражения всех зеркал в центре диапазона перестройки превышали 99 %. Излучение накачки проходило через линзу L_3 с фокусным расстоянием 20 cm и через зеркало M_7 с высоким пропусканием в области накачки направлялось на активный элемент A_2 . Измерение распределения интенсивности излучения на-качки в перетяжке показало, что световое пятно имеет форму круга

с диаметром около 100 μ m, близким к размеру моды резонатора. При проведении экспериментов было использовано два комплекта зеркал на диапазоны 680 ÷ 850 и 850 ÷ 980 nm. Перестройка длины волны генерации осуществлялась брюстеровской стеклянной призмой P_2 , а вывод излучения из резонатора — с помощью тонкой плоскопараллельной стеклянной пластинки P_3 , установленной под углом к оси резонатора титан-сапфирового лазера. Средние мощности генерации и накачки измерялись с помощью измерителей мощности 1 (ИМО-2). Временны́е характеристики излучения регистрировались фотоэлементом 2 (ФК-19). Излучение по световоду направлялось на вход спектрометра 3 (СФК-601) для измерения длины волны.

Перестроечные характеристики изучались при 16%-ной нагрузке резонатора, задаваемой поворотом пластинки P_3 . Область генерации, реализованная при использовании двух комплектов зеркал, составила 710–970 nm. В качестве иллюстрации на рис. 2, *а* приведена перестроечная характеристика Al_2O_3 : Ti³⁺ лазера при использовании комплекта зеркал со спектральной характеристикой, центрированной на $\lambda = 790$ nm. Суммарная мощность накачки на обеих линиях в этом случае составила 6 W.

Спектральные характеристики лазера при раздельной накачке излучением с $\lambda_1 = 510.6$ nm и $\lambda_2 = 578.2$ nm приведены на рис. 2, *b*. Отметим, что мощность накачки на каждой из линий составила 3 W. Как видно из приведенных графиков, несмотря на сильное различие сечений поглощения, как эффективность преобразования накачки, так и область перестройки в обоих случаях практически одинаковы.

Полученные результаты можно объяснить, воспользовавшись выражением для дифференциальной эффективности [4,5]:

$$\eta = \frac{\lambda_p}{\lambda_g} \cdot \frac{T}{(T+\delta)} \cdot (1-T_p), \tag{1}$$

где λ_p , λ_g — длины волн накачки и генерации, T — потери на пропускание через зеркала лазера, δ — пассивные потери в резонаторе, T_p — пропускание кристалла на длине волны накачки.

Из (1) легко получить соотношение для относительной эффективности накачки на длинах волн λ_{p_1} и λ_{p_2} :

$$\eta_1/\eta_2 = \frac{\lambda_{p_1}}{\lambda_{p_2}} \cdot \frac{(1 - T_{p_1})}{(1 - T_{p_2})}.$$
(2)

Рис. 2. Зависимость выходной мощности лазера на титан-сапфире от длины волны генерации: a — накачка обеими линиями излучения одновременно; b — раздельная накачка, $\lambda_1 = 510.6$ nm, $\lambda_2 = 578.2$ nm.

Подставляя в (2) значения величин, соответствующие условиям эксперимента, получим $\eta_1/\eta_2 = 1.04$, что хорошо согласуется с нашими данными. Физически это означает, что в рассматриваемом случае двухчастотной накачки происходит взаимная компенсация эффектов, связанных с различием стоксова сдвига и поглощения в активной среде.

Максимальная выходная мощность достигалась при увеличении нагрузки до 40% и в центре перестроечной характеристики составила для первого комплекта зеркал величину P = 1.32 W ($\lambda = 790 \text{ nm}$), а для второго комплекта P = 1.2 W ($\lambda = 900 \text{ nm}$). Дифференциальная эффективность равнялась 26.4 и 24% соответственно.

Полученный в настоящей работе уровень выходной мощности, диапазон перестройки и коэффициент полезного действия показывают, что медные лазеры как источники накачки лазеров на титан-сапфире вполне способны конкурировать с традиционно используемыми системами. Наличие альтернативных источников накачки, на наш взгляд, расширяет возможности титан-сапфировых лазеров, позволяя выбирать оптимальный вариант применительно к конкретной задаче.

Список литературы

- [1] Moulton P.E. // J. Opt. Soc. Am. B. 1986. N 3. P. 125-133.
- [2] Moncorge R., Boulon G., Vivien D., Lejns A.M., Collongues R., Djevahirdjian V., Djevahirdjian K., Cagnard R. // IEEE J. Quantum Electron. 1988. N 24. P. 1049– 1051.
- [3] Бартошевич С.Г., Зуев В.В., Мирза С.Ю. и др. // Квантовая электроника. 1989. Т. 16. № 2. С. 212–217.
- [4] Sancher A., Strauss A.J., Aggarwal R.L., Fahey R.E. // IEEE Journ. of QE. 1988. V. 24. N 6. P. 995–1002.
- [5] Басиев Т.Т., Зверев П.Г., Папашвили А.Г., Федоров В.В. // Квантовая электроника. 1997. Т. 24. № 7. С. 591–595.