01;05;06;07;08 Фотоиндуцированная решетка поверхностного рельефа в кубическом кристалле в постоянном электрическом поле

© А.М. Кириллов, С.М. Шандаров, Н.И. Буримов

Томский государственный университет систем управления и радиоэлектроники

Поступило в Редакцию 21 января 1999 г.

Предложена теоретическая модель, описывающая в стационарном режиме фоторефрактивную решетку поверхностного рельефа в кубическом кристалле, помещенном во внешнее постоянное электрическое поле. На ее основе проведен расчет высоты поверхностного рельефа кристалла $Bi_{12}TiO_{20}$ для среза (001), где взаимодействие световых пучков в объеме среды отсутствует.

Периодический рельеф, фотоиндуцированный при формировании фоторефрактивных решеток картиной интерференции двух световых волн на поверхности силленитов, помещенных в постоянное внешнее поле, экспериментально исследовался в работах [1–3]. Его присутствие связано с упругими деформациями, которые сопровождают поле пространственного заряда фоторефрактивной решетки вследствие пьезоэлектрического эффекта [4]. Теоретический анализ поверхностной структуры фоторефрактивной решетки [5–7] проводился для кристаллов, к которым внешнее поле не приложено.

В данном сообщении представлена теоретическая модель, описывающая структуру электрических и упругих полей фоторефрактивной решетки в стационарном режиме для кристаллов с приложенным постоянным полем. Мы рассматриваем фоторефрактивную решетку с вектором \mathbf{k}_g , ориентированным вдоль кристаллографической оси [110] в кубическом кристалле симметрии 23 и $\bar{4}3m$ (см. рисунок). Она сформирована при симметричной геометрии взаимодействия световых пучков, когда биссектриса угла между ними совпадает с осью [001] образца. Электрическое поле приложено к кристаллу вдоль оси [110] и совпадает по направлению с вектором \mathbf{k}_g . Считаем, что граница

74

Ориентация кристаллографических осей и вектора решетки. Кристалл занимает полупространство $x \leq 0$. *1* — поверхностный рельеф.

кристалла x = 0 является механически свободной, а диэлектрическая среда при x > 0 имеет диэлектрическую проницаемость ε_0 .

Не принимая во внимание самодифракционные эффекты, распределение интенсивности света в кристалле представим в виде

$$I(z) = I_0[1 + m \cdot \cos(k_g z)], \tag{1}$$

где I_0 — суммарная интенсивность сигнального и опорного пучков, $k_g = |\mathbf{k}_g| = 2\pi/\Lambda$, m — глубина модуляции света и Λ — период интерференционной картины. В стационарном режиме и в условиях, когда можно пренебречь темновой проводимостью и эффектом насыщения ловушек, концентрация электронов в зоне проводимости линейно связана с интенсивностью света. Пользуясь для описания поля пространственного заряда его электростатическим потенциалом и уравнением непрерывности, получаем уравнение, описывающее распределение амплитуды первой пространственной гармоники потенциала $\varphi_m(x)$ в кристалле:

$$\frac{\partial^2 \varphi_m}{\partial x^2} - k_g^2 \varphi_m = -m \left(\frac{k_B T}{e} k_g^2 + i k_g E_0 \right), \qquad \text{при} \ x \leqslant 0, \qquad (2)$$

где k_B — постоянная Больцмана, T — абсолютная температура, e — элементарный электрический заряд, E_0 — амплитуда внешнего элек-

Письма в ЖТФ, 1999, том 25, вып. 17

трического поля. Используя условия непрерывности потенциала и отсутствия нормальной составляющей тока на границе x = 0, можно показать, что амплитуда поля пространственного заряда в образце в приближении заданного распределения фотоэлектронов в зоне проводимости не зависит от поперечной координаты x. Следовательно, для диэлектрической границы в стационарном режиме справедливо приближение заданной решетки электрического поля [6], распределение потенциала которого имеет в рассматриваемом случае вид

$$\varphi(z) = \frac{m}{k_g} (E_D \cos(k_g z) - E_0 \sin(k_g z)),$$
 при $x \le 0,$ (3)

где $E_D = k_g k_B T / e$ — диффузионное поле.

Структуру упругих полей определим из уравнений эластостатики, которые в нашем случае с учетом симметрии тензоров модулей упругости \hat{C} и пьезоэлектрических констант \hat{e} принимают вид

$$\sqrt{2}C_{44}^{E}\frac{\partial^{2}U_{z}}{\partial x^{2}} + \frac{1}{\sqrt{2}}\left(C_{11} + C_{12} + 2C_{44}^{E}\right)\frac{\partial^{2}U_{z}}{\partial z^{2}} + \sqrt{2}\left(C_{12} + C_{44}^{E}\right)\frac{\partial^{2}U_{x}}{\partial x\partial z} = 0,$$
(4)

$$\left(C_{12}+C_{44}^{E}\right)\frac{\partial^{2}U_{z}}{\partial x\partial z}+C_{11}\frac{\partial^{2}U_{x}}{\partial x^{2}}+C_{44}^{E}\frac{\partial^{2}U_{x}}{\partial^{2}z}=-e_{14}\frac{\partial^{2}\varphi}{\partial^{2}z},$$
(5)

где U_x и U_z — нормальная и тангенциальная к границе кристалла компоненты вектора упругих смещений соответственно; и из граничных условий для тензора упругих напряжений \hat{T}

$$C_{44}^{E}\frac{\partial U_{x}}{\partial z} + C_{44}^{E}\frac{\partial U_{z}}{\partial x} = -e_{14}\frac{\partial \varphi}{\partial z}, \qquad \text{при} \quad x = 0, \tag{6}$$

$$C_{11}\frac{\partial U_x}{\partial x} + C_{12}\frac{\partial U_z}{\partial z} = 0,$$
 при $x = 0.$ (7)

Из уравнений (4)–(7) следует, что тангенциальная компонента упругого смещения U_z отсутствует, а амплитуда U_{xm} поперечной к вектору решетки компоненты постоянна во всем объеме образца, так что

$$U_x(z) = \left(-\frac{e_{14}}{C_{44}}m\right) \left[\left(\frac{k_B T}{e}\right)\cos(k_g z) + \frac{E_0}{k_g}\sin(k_g z)\right].$$
 (8)

Письма в ЖТФ, 1999, том 25, вып. 17

		ϕ , grad	$ U_x , \mathbf{m}$
$E_0 = 1 \mathrm{kV/cm}$	$\Lambda = 3 \mu \mathrm{m}$ $\Lambda = 30 \mu \mathrm{m}$	$-118.5 \\ -93.1$	$\begin{array}{c} 2.468 \cdot 10^{-13} \\ 2.173 \cdot 10^{-12} \end{array}$
$E_0 = 10 \mathrm{kV/cm}$	$\Lambda = 3 \mu \mathrm{m}$ $\Lambda = 30 \mu \mathrm{m}$	$-93.1 \\ -90.3$	$\begin{array}{c} 2.173 \cdot 10^{-12} \\ 2.17 \cdot 10^{-11} \end{array}$

Наличие компоненты U_x в упругом поле фоторефрактивной решетки приведет к изгибу плоскостей (001) кристалла и формированию на входной и выходной гранях образца периодического рельефа. Вклад диффузионного механизма в поверхностную решетку не зависит от ее пространственного периода и характеризуется в зависимости от знака пьезоэлектрической константы e_{14} сдвигом фаз 0 или π относительно интерференционной картины. Дрейфовый механизм дает вклад, пропорциональный периоду решетки, и характеризуется сдвигом фаз $\pi/2$ или $-\pi/2$. Значения амплитуды поверхностного рельефа и результирующего фазового сдвига ϕ в решетке, рассчитанные для кристалла $Bi_{12}TiO_{20}$ при различных значениях пространственного периода Λ и амплитуды внешнего поля E_0 , представлены в таблице для m = 0.1.

Следует отметить, что в данном срезе (001) взаимодействие световых пучков в объеме образца отсутствует [8]. Однако наличие поверхностного рельефа делает возможным наблюдение в этом случае дифракционных процессов в отражательной геометрии, исследованной в работах [2,3] для среза (110) кристаллов Bi₁₂TiO₂₀ и Bi₁₂SiO₂₀.

Авторы благодарят С.И. Степанова за полезные обсуждения.

Список литературы

- Близнецов А.М., Петров М.П., Хоменко А.В. // Письма в ЖТФ. 1984. Т. 10. С. 1094–1098.
- [2] Stepanov S., Korneev N. et al. // Appl. Phys. Lett. 1998. V. 72. P. 879-881.
- [3] *Петров М.П., Паугурт А.П.* и др. // Письма в ЖТФ. 1998. Т. 24. В. 22. С. 11–16.
- [4] Шандаров С.М. // ЖТФ. 1986. Т. 56. С. 583-586.
- [5] Шандаров С.М., Шандаров В.М. // ЖТФ. 1990. Т. 60. С. 106-112.
- [6] Fogarty G., Gronin-Golomb M. // Opt. Lett. 1995. V. 20. P. 2276–2278.
- [7] Шандаров С.М., Буримов Н.И. // Изв. вузов. Физика. 1997. № 9. С 75-79.
- [8] Петров М.П., Степанов С.И., Хоменко А.В. Фоторефрактивные кристаллы в когерентной оптике. СПб: Наука, 1992. 317 с.

Письма в ЖТФ, 1999, том 25, вып. 17