06;07;12

Оптическое поглощение в эпитаксиальных пленках $Gd_3Ga_5O_{12}$, выращенных из раствора-расплава на основе PbO-B₂O₃

© В.В. Рандошкин, Н.В. Васильева, А.М. Салецкий, Н.Н. Сысоев

Московский государственный университет им. М.В. Ломоносова Совместная хозрасчетная лаборатория "Магнитооптоэлектроника" Института общей физики РАН при Мордовском государственном университете им. Н.П. Огарева

Поступило в Редакцию 24 марта 1999 г.

Сообщается об обнаруженном дополнительном оптическом поглощении в монокристаллических пленках граната номинального состава $Gd_3Ga_5O_{12}$, выращенных методом жидкофазной эпитаксии из переохлажденного раствора-расплава на основе $PbO-B_2O_3$.

При последовательном выращивании в одинаковых условиях монокристаллических пленок граната (МПГ) ряда составов методом жидкофазной эпитаксии на подложках $Gd_3Ga_5O_{12}$ (ГГГ) из переохлажденного раствора-расплава на основе $PbO-B_2O_3$ обнаружено изменение их окраски [1].

С целью выяснения причин этого эффекта в настоящей работе изучено оптическое пропускание МПГ $Gd_3Ga_5O_{12}$, выращенных на подложках (ГГГ) с ориентацией (111) из раствора-расплава на основе $PbO-B_2O_3$.

Состав шихты характеризовался следующими мольными отношениями:

$$R_1 = \text{Ga}_2\text{O}_3/\text{Gd}_2\text{O}_3 \approx 14.4,$$

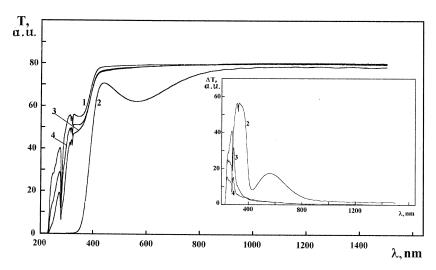
 $R_2 = \text{PbO}/\text{B}_2\text{O}_3 \approx 16.0,$

$$R_3 = (Gd_2O_3 + Ga_2O_3)/(Gd_2O_3 + Ga_2O_3 + PbO + B_2O_3) \approx 0.08.$$

Раствор-расплав в платиновом тигле гомогенизировали в течение 240 min. Далее его температуру снижали до температуры роста T_g в течение 30 min и после ее установления в раствор-расплав погружали

Параметры эпитаксиальных МПГ номинального состава Gd₃Ga₅O₁₂

№ π/π	t_g , min	2h, μm	$f_{ m g}$, μ m/min	$\lambda_{0.1}, \\ nm$	$\lambda_{ ext{max}}, \\ ext{nm}$	$\lambda_{ ext{min}}, \ ext{nm}$	I_{\min}/I_{\max}
1	2	5.6	2.80	359	430	552	0.89
2	2	1.5	0.75	251	_	_	_
3	2	1.1	0.55	235	_	_	_
4	5	9.5	1.90	367	425	554	0.82
5	5	4.6	0.92	297	_	_	_
6	5	2.0	0.40	241	_	_	_
7	10	35.9	3.59	385	425	556	0.51
8	10	8.0	0.80	341	432	552	0.97
9	10	3.1	0.31	249	_	_	_
10	20	64.9	3.25	393	428	556	0.35
11	20	29.8	1.49	365	438	542	0.95
12	20	9.4	0.47	289	_	_	_


подложку. МПГ выращивали при переохлаждении раствора-расплава $\Delta T = 20 \, \text{K}$. Выращены четыре серии МПГ по 3 образца в каждой, для которых время роста t_g составляло 2, 5, 10 и 20 min, а промежуток времени между извлечением предыдущей пленки и началом роста следующей $\sim 60 \, \text{min}$.

В каждой серии первая пленка была окрашена в фиолетовый цвет, а последняя была бесцветной. Было обнаружено также спонтанное выпадение на поверхности раствора-расплава и платиновой оснастке монокристаллов граната размером до $\sim 70\,\mu\mathrm{m}$, как правило, в форме тетрагонтриоктаэдра. Как и для эпитаксиальных пленок, цвет первых из образовавшихся монокристаллов был фиолетовый, а затем монокристаллы становились бесцветными.

Толщину МПГ h, определяли, взвешивая подложку до эпитаксиального роста и пленку с подложкой после него [1]. Спектр пропускания пленок измеряли с помощью спектрометра Lambda 900 фирмы Perkin-Elmer. Параметры исследованных МПГ приведены в таблице.

Обнаружено сильное снижение скорости роста пленки f_g по мере выдержки раствора-расплава в переохлажденном состоянии, вследствие чего при выращивании в одинаковых условиях значения толщины h последовательно выращенных МПГ в каждой серии различаются (см. таблицу). Вслед за авторами работы [1] такое снижение f_g мы объясняем проявлением эффекта деградации пересыщенного состояния растворарасплава, хорошо известного для монокристаллических пленок ферритгранатов [2–4].

2* Письма в ЖТФ, 1999, том 25, вып. 17

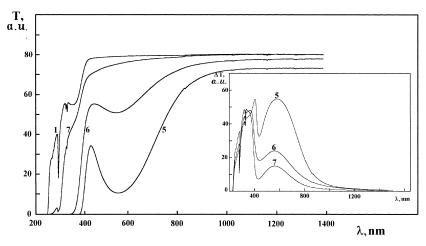


Рис. 1. Спектры оптического пропускания T (λ) подложки ГГГ (I) и эпитаксиальных МПГ № 1 (2), № 2 (3) и № 3 (4). На врезке показаны разностные спектры $\Delta T(\lambda)$ подложки ГГГ и эпитаксиальных МПГ № 1 (2), № 2 (3) и № 3 (4).

Снижение f_g не может быть объяснено испарением раствора-расплава [5], поскольку оно имеет место и при последовательном выращивании непосредственно друг за другом серии пленок с $t_g=2$ min ($f_g=2.23~\mu$ m/min для первой пленки в серии и $f_g=0.47~\mu$ m/min для четвертой).

На рис. 1 и 2 приведены спектры пропускания подложки ГГГ (кривые I) и двух серий пленок с временем роста $t_g=2$ min (рис. 1, кривые 2-4) и $t_g=20$ min (рис. 2, кривые 5-7). Видно, что эпитаксиальные пленки обладают долнительным поглощением по сравнению с подложкой, особенно значительным для относительно толстых образцов (рис. 1, кривая I2; рис. 2, кривые I3. При этом в каждой серии последовательно выращенных МПГ по мере роста номера образца и, следовательно, скорости роста пленки край кривой пропускания смещается в коротковолновую область. Этот край характеризовали длиной волны I4. (см. таблицу), при которой пропускание I6 составляет I6 от максимального значения.

Письма в ЖТФ, 1999, том 25, вып. 17

Рис. 2. Спектры оптического пропускания T (λ) подложки ГГГ (I) и эпитаксиальных МПГ № 10 (5), № 11 (6) и № 12 (7). На врезке показаны разностные спектры $\Delta T(\lambda)$ подложки ГГГ и эпитаксиальных МПГ № 10 (5), № 11 (6) и № 12 (7).

На рис. 1 и 2 можно выделить две характерные формы кривых $T(\lambda)$. Кривые 3 и 4 (рис. 1) в основных чертах повторяют кривую пропускания подложки ГГГ (кривая I). Кривые 2 (рис. 1), 5 и 6 (рис. 2) имеют "провал" в окрестности длины волны $\lambda_{\min} \approx 550$ nm. Глубину этого "провала" характеризовали отношением I_{\min}/I_{\max} , где I_{\min} — пропускание в "провале", а I_{\max} — в предшествующем ему пике пропускания в окрестности длины волны $\lambda_{\max} \approx 430$ nm. Величина λ_{\min} , λ_{\max} и I_{\min}/I_{\max} приведена в таблице. Промежуточное положение занимает кривая I_{\min}/I_{\max} приведена в таблице. Промежуточное положение занимает кривая I_{\min}/I_{\max} приведена в таблице. За сторой "провал" отсутствует, но имеется пик пропускания на длине волны I_{\min}/I_{\max} подложки I_{\min}/I_{\max} подложки I_{\min}/I_{\max} подложки $I_{\min}/I_{\max}/I_{\max}$

На вставках рис. 1 и 2 для наглядности показаны разностные спектры $\Delta T(\lambda)$, полученные путем вычитания из спектра пропускания подложки ГГГ спектра пропускания соответствующей пленки. Видно, что для толстых МПГ характерен широкий максимум с центром вблизи 560 nm, интенсивность которого увеличивается с ростом h.

Появление дополнительного оптического поглощения в эпитаксиальных МПГ по сравнению с монокристаллами ГГГ объясняется тем, что

Письма в ЖТФ, 1999, том 25, вып. 17

в состав пленок входят примесные ионы. При этом, чем выше скорость роста пленки, тем выше в ней концентрация ионов с коэффициентами распределения менее 1, в частности нетрехвалентных ионов Pb^{2+} , Pb^{4+} , Pt^{4+} . (Заметим, что ионы платины входят в раствор-расплав при растворении материала тигля). В частности, наличие максимума с центром вблизи $560\,\mathrm{nm}$, скорее всего, связано с вхождением в состав МПГ пар ионов Pb^{2+} — Pb^{4+} и, как следствие, с соответствующими межвалентными переходами [3]. Внутриионные переходы являются более слабыми [3].

Наличие дополнительного оптического поглощения необходимо учитывать при разработке новых лазерных пленочных материалов, выращиваемых методом жидкофазной эпитаксии из переохлажденного растворарасплава.

Таким образом, в настоящей работе показано, что, во-первых, эпитаксиальные МПГ номинального состава $Gd_3Ga_5O_{12}$, выращенные из раствора-расплава на основе $PbO-B_2O_3$, обладают дополнительным оптическим поглощением по сравнению с подложками ГГГ и, во-вторых, на это поглощение влияет деградация раствора-расплава.

Авторы искренне благодарят А.В. Васильева и В.Г. Плотниченко за помощь в проведении оптических измерений и обработке их результатов.

Работа частично поддержана Российским фондом фундаментальных исследований (грант № 99–02–18427).

Список литературы

- [1] *Рандошкин В.В., Беловолов А.М., Беловолов М.И., Васильева Н.В., Дианов Е.М., Сташун К.В., Тимошечкин М.И.* // Квантовая электроника. 1998. Т. 25. В. 3. С. 233–235.
- [2] *Рандошкин В.В., Васильева Н.В., Сташун К.В., Сташун М.В.* // Неорганические материалы. 1999. Т. 35. В. 1. С. 1–3.
- [3] Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.
- [4] Чернов А.А., Гиваргизов Е.И., Багдасаров Х.С., Кузнецов В.А., Демьянец Л.Н., Лобачев А.Н. Современная кристаллография. Т. 3. Образование кристаллов. М.: Наука, 1980. С. 42.
- [5] Ferrand B., Chambaz B., Couchaud M. // Optical Materials. 1999. V. 11. P. 101– 114.

Письма в ЖТФ, 1999, том 25, вып. 17