## 01;03;08

# Переходные процессы в окрестности порога субгармонического резонанса

#### © А.О. Максимов, Е.В. Соседко

Тихоокеанский океанологический институт ДВО РАН, Владивосток

### Поступило в Редакцию 1 апреля 1999 г.

Потеря устойчивости динамической системы в окрестности субгармонического резонанса проявляется в затягивании переходных процессов. На примере нелинейных пульсаций газового пузырька под действием частотнозаполненного акустического импульса показано, что экспериментально наблюдаемое излучение субгармоники ниже порога генерации может быть объяснено вкладом собственных колебаний, возникающих в момент вступления импульса, время затухания которых, благодаря параметрической перекачке энергии, сопоставимо с его длительностью.

Своеобразие реакции нелинейной динамической системы на внешнее гармоническое воздействие состоит в появлении спектральных компонент ниже частоты возбуждения. Эти компоненты носят название субгармонических составляющих. Наиболее известным примером является компонента (1/2), частота которой равна половине частоты возбуждения. В отличие от высших гармоник, амплитуды которых растут непрерывно с увеличением интенсивности воздействия, появление субгармонических составляющих носит пороговый характер.

Ниже в качестве примера такой системы будут проанализированы радиальные пульсации газового пузырька в жидкости под действием мощной акустической волны. Регистрация субгармонической составляющей (в дальнейшем речь идет всюду о компоненте 1/2) является общеупотребительной характеристикой кавитационных и других нелинейных

1

явлений в жидкости с фазовыми включениями [1–5]. Вместе с тем, начиная с работы Непайерса [2], отмечается наличие небольшой субгармонической составляющей и ниже порога [6–8], так что нарастание этой спектральной компоненты не имеет, строго го+воря, порогового характера.

Предлагаемое в данной работе объяснение связано с анализом переходных процессов в окрестности субгармонического резонанса. В окрестности порога теряет свою устойчивость состояние с нулевой амплитудой колебаний на основной (фундаментальной) частоте, при этом образается в нуль один из двух показателей Ляпунова. При включении внешнего поля (как правило, эксперименты проводятся с модулированными импульсными сигналами, содержащими от десятков до сотен периодов накачки  $T = 2\pi/\omega_p$ ) помимо вынужденных возбуждаются и собственные колебания с частотой  $\sim \omega_p/2$ . В окрестности порога затухание собственных колебаний, определяемое показателем Ляпунова, благодаря параметрической перекачке энергии в эту компоненту, очень мало (обращается в нуль для порогового значения амплитуды накачки). По этой причине время переходных процессов может превышать длительность импульса накачки, а соответствующая компонента в спектре излучения интерпретироваться как появление субгармонической компоненты ниже порога.

При количественном рассмотрении эффекта воспользуемся уравнением Рэлея–Плессета, описывающим пульсации пузырька в поле давления  $P_p = P_m \cos(\omega_p t + \alpha)$ :

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 + \frac{P_0}{\rho_0} \left[ 1 - \left(\frac{R_0}{R}\right)^{3\gamma} \right] + 2\delta R_0 \dot{R} = -\frac{P_p}{\rho_0}.$$
 (1)

Здесь  $\gamma$  — показатель политропы;  $\delta$  — затухание, эффективно учитывающее диссипативные процессы вязкости и теплопроводности, а также радиационные потери;  $P_0$ ,  $\rho_0$ ,  $R_0$  — равновесные значения давления и плотности жидкости, радиусов пузырьков. Асимптотическое разложение решения (2) в окрестности субгармонического резонанса  $|\omega_p - 2\Omega_0| \ll \omega_p$  (см., например, [9–11]) имеет вид

$$(R - R_0)/R_0 = a\cos(i\Omega_0 t + i\vartheta) + \frac{P_m\cos(\omega_p t + \alpha)}{\rho_0 R_0^2(\omega_p^2 - \Omega_0^2)} + \varepsilon u_1(a, \vartheta, t) + \varepsilon^2 u_2(a, \vartheta, t) + \dots$$
(2)

Здесь  $\Omega_0 = (3\gamma P_0/\rho_0 R_0^2)^{1/2}$  — собственная частота пузырька;  $\varepsilon$  — безразмерный малый параметр, вводимый для обозначения порядка нелинейных членов. Медленно меняющиеся амплитуда *a* и фаза  $\vartheta$  колебаний определяются из системы "укороченных" уравнений, следующей из требования отсутствия секулярных членов в разложении. Учет в (1) нелинейных членов до второго порядка включительно приводит к следующему уравнению для  $z = a \cdot \exp(i\vartheta) \exp[-i(\omega_p/2 - \Omega_0)t]$ :

$$\dot{z} = -\delta z - i\Delta\Omega z - i\delta\frac{P_m}{P_k}\exp(i\alpha)z^*,$$
$$\Delta\Omega = \omega_p/2 - \Omega_0, P_k = 4\delta\Omega_0\rho_0 R_0^2\gamma^{-1}.$$
(3)

Это уравнение следует дополнить начальными данными для a и  $\vartheta$ , которые могут быть получены при подстановке разложения (2) в точные начальные условия. При возбуждении пузырька из положения покоя R(0) = 0, dR/dt(0) = 0

$$a(0) = \frac{P_m}{3\rho_0 R_0^2 \Omega_0^2} \sqrt{1 + 3\sin^2 \alpha}; \qquad \operatorname{tg} \vartheta(0) = 2\operatorname{tg} \alpha.$$
(4)

Решение системы уравнений с постоянными коэффициентами (3) имеет вид

$$z(t) = \exp(-\lambda_1 t) \frac{1}{2} \left[ z(0) \left( 1 - i \frac{2\Delta\Omega}{\lambda_1 - \lambda_2} \right) - i z^*(0) \frac{\delta P_m}{P_k(\lambda_1 - \lambda_2)} \right] + \exp(-\lambda_2 t) \frac{1}{2} \left[ z(0) \left( 1 + i \frac{2\Delta\Omega}{\lambda_1 - \lambda_2} \right) + i z^*(0) \frac{\delta P_m}{P_k(\lambda_1 - \lambda_2)} \right], \quad (5)$$

где  $\lambda_{1,2} = \delta \Big[ 1 \mp \sqrt{(P_m^2/P_k^2) - (\Delta\Omega/\delta)^2} \Big]$  — показатели Ляпунова. Вблизи порога  $P_m = P_b - \Delta P$ ,  $\Delta P > 0$ ,  $\Delta P \ll P_b$ ,  $P_b^2 = P_k^2 [1 + (\Delta\Omega/\delta)^2]$  показатель  $\lambda_1 = \delta \Big[ 1 - \sqrt{(P_m^2/P_k^2) - (\Delta\Omega/\delta)^2} \Big] = \delta \Big[ 1 - \sqrt{1 - ((P_b^2/P_k^2) - (P_m^2/P_k^2))} \Big] \approx \delta (\Delta P P_b/P_k^2)$  мал, поэтому первое слагаемое в формуле (5) будет доминировать на временах  $t = \lambda_1^{-1} \approx [\delta (\Delta P P_b/P_k^2)]^{-1} \gg \delta^{-1}$  и описывать субгармоническую компоненту излучения пузырька.

Подставляя явные выражения для начальных значений  $z(0), z^*(0),$  получаем

$$a(t)\cos(\Omega_0 t + \vartheta(t)) = a(0)(P_b/P_k)\exp\left[-\delta t(\Delta P P_b/P_k^2)\right]$$
$$\times Re\left\{\exp\left[i((\omega_p/2)t + \arctan(2tg\alpha))\right]0.5\left[\exp i(\arctan(\Delta\Omega/\delta))\right]$$
$$-\exp i(\pi/2 - 2\arctan(2tg\alpha) + \alpha)\right]\right\}.$$
(6)

Как следует из этого выражения, эффективность возбуждения слабоустойчивой компоненты собственных колебаний зависит от фазы внешнего поля  $\alpha$ . Наиболее существенно это обстоятельство проявляется при  $P_m < P_k$ , а для непрерывного распределения пузырьков по размерам именно  $P_k$  является экспериментально наблюдаемым порогом возбуждения субгармонической компоненты. Условия малости затухания принимают в этой области вид  $(P_k - P_m) \ll P_k$ ,  $(\Delta \Omega)^2 \ll \delta^2$ . Возбуждение будет крайне неэффективным для волны накачки с фазой, близкой к  $\pi/2$ . Как следует из (6), разность экспонент в квадратных скобках имеет в этом случае порядок  $\sim (\Delta \Omega)/\delta$ . Следует отметить, что в ставших классическими работах Лаутерборна [12–14], посвященных анализу численными методами нелинейной динамики пузырька, фаза внешнего поля полагалась именно равной  $\pi/2$ .

Проведем сопоставление с имеющимися экспериментальными данными [6]. Зондирование области, в которой с помощью электролиза создавались пузырьки с размерами (5–10)  $\cdot$  10<sup>-6</sup> m, производилось ультразвуковыми импульсами с частотой заполнения 1.2 MHz и длительностью 10  $\mu$ s. С помощью селективного приемника проводились измерения уровня сигнала на частоте 0.6 MHz. Их результаты указывают на отсутствие явно выраженного порога генерации в диапазоне амплитуд зондирующих импульсов (0.25–1)  $\cdot$  10<sup>5</sup> Pa. На рисунке эти данные изображены черными квадратиками.

Спектральная плотность излученного пузырьком субгармонического сигнала при воздействии частотнозаполненного импульса длительностью *T* пропорциональна

$$S(\omega_p/2) \sim \frac{(1 - \exp[-T(\delta - \lambda_1)])^2 + 2(1 - \cos(\Delta\Omega T))\exp[-T(\delta - \lambda_1)]}{((\delta - \lambda_1)/\delta)^2 + (\Delta\Omega/\delta)^2}.$$
(7)



Коэффициент затухания пузырька  $\delta$ , резонансного на частоте 0.6 MHz, согласно [15] составляет  $\delta \sim 4 \cdot 10^5$  (1/s). Порог субгармонического резонанса  $P_k$  при этом будет равен (см. определение (3) или более точное выражение, учитывающее вклад поверхностного натяжения, [10])  $P_k \sim 0.8 \cdot 10^5$  Ра. Поскольку значение концентрации пузырьков не определялось в ходе обсуждаемых экспериментов, мы воспользовались этой величиной как подгоночным параметром и нанесли зависимость уровня субгармонического сигнала от давления, исходя из выражения (7), для различных значений расстройки. Кривая I отвечает точному резонансу  $\Delta\Omega = 0$ , зависимость 2 соответствует  $\Delta\Omega/\delta = 0.5$ . Качественное согласие является определенно аргументом в пользу предлагаемого объяснения, количественное же сопоставление требует последовательного суммирования вклада отдельных пузырьков и численного решения уравнения Рэлея, поскольку значительная величина порога ограничивает точность используемого асимптотического разложения.

В заключение отметим, что хотя представленные результаты относятся к конкретной физической модели, тот факт, что широкий класс нелинейных динамических систем, описываемых, например, уравнением Дюффинга, имеет такую же структуру "укороченного" уравнения (3), позволяет прогнозировать затягивание переходных процессов в этих системах вблизи порога субгармонического резонанса.

Авторы выражают благодарность В.А. Буланову за плодотворное обсуждение.

## Список литературы

- [1] Esche R. // Acustica. 1952. V. 2. P. 208-218.
- [2] Флинн Г. Физика акустической кавитации в жидкости. // Физическая акустика. М.: Мир, 1967.
- [3] Neppiras E.A. // J. Acoust. Soc. Am. 1969. V. 46. N 2. P. 587-601.
- [4] Eller A., Flynn H.G. // J. Acoust. Soc. Am. 1969. V. 46. N 3. P. 722-727.
- [5] Leighton T.G. // The Acoustical Bubble. London: Academic Press, 1994.
- [6] Мансфельд А.Д., Рейман А.М. // Ультразвуковая диагностика. Горький: ИПФ АН СССР, 1983. С. 151–161.
- [7] Кирилов А.Г., Мансфельд А.Д., Рейман А.М., Чичагов П.К. // Проблемы нелинейной акустики. Ч. 2. Новосибирск: Ин-т гидродинамики, 1987. С. 32– 34.
- [8] Losberg O., Hovem J.M., Aksum B. // J. Acoust. Soc. Am. 1996. V. 99. N 3. P. 1366–1369.
- [9] Prosperetti A. // J. Acoust. Soc. Am. 1974. V. 56. N 3. P. 878-885.
- [10] Prosperetti A. // J. Acoust. Soc. Am. 1975. V. 57. N 1. P. 810-821.
- [11] Максимов А.О. // ЖТФ. 1988. Т. 58. № 4. С. 822-825.
- [12] Lauterborn W. // Acustica 1969/70. V. 22. P. 238-239.
- [13] Lauterborn W. // J. Acoust. Soc. Am. 1976. V. 59. N 1. P. 283-293.
- [14] Cramer E., Lauterborn W. // Acustica. 1981. V. 49. P. 280-287.
- [15] Church C.J. // Acoust. Soc. Am. 1994. V. 97. N 3. P. 1501-1521.