06;12 Отжиг структур алюминий–диоксид кремния–кремний, облученных α-частицами

© С.В. Васин, В.Б. Тулвинский, Э.Т. Шипатов

Ульяновский государственный университет

Поступило в Редакцию 22 марта 1999 г.

Исследован изохронный отжиг структур Al–SiO₂–Si в диапазоне температур 20–450°C после облучения α -частицами от радиоизотопного источника Cm²⁴⁴. В указанной области температур обнаружен эффект уменьшения положительного заряда в диэлектрике ниже исходных значений. Высказано предположение, что эффект может быть результатом дефектообразования и структурных перестроек в окрестности межфазной границы Si/SiO₂ в процессе облучения и отжига.

Исследование процессов генерации и отжига дефектов в МОПструктурах является актуальной задачей твердотельной электроники. Однако, несмотря на значительное число экспериментальных и теоретических работ (см., например, [1,2]), некоторые проблемы не нашли должного отражения в литературе. К ним можно отнести процессы генерации и отжига дефектов в пленке SiO₂ и на межфазной границе Si/SiO₂, создаваемых радиационной обработкой. Исследованию таких процессов и посвящена настоящая работа.

Образцы МОП-конденсаторов были изготовлены на основе кремния *n*-типа, легированного фосфором, с удельным сопротивлением $6.5 \Omega \cdot \text{сm}$. Оксидный слой толщиной 100 nm был выращен термическим окислением при 1050°С в атмосфере сухого кислорода с добавлением 3% HCl. На поверхность SiO₂ электронно-лучевым испарением наносилась пленка алюминия, в которой фотолитографическим методом были сформированы контактные площадки размером 1.1×1.1 mm. Для обеспечения омического контакта на обратной стороне кремниевой пластины после стравливания оксида наносилась сплошная алюминиевая пленка. В заключительной стадии проводился отжиг структур в атмосфере сухого азота при 500°С. Облучение структур производилось α -частицами радиоизотопного источника Cm²⁴⁴ (энергия α -частиц 4 MeV, флюенс 6·10⁹ cm⁻²).

59

Кривые изохронного отжига плотности фиксированного заряда в SiO₂ (a) и плотности поверхностных состояний на границе Si/SiO₂ (b) облученных структур. Горизонтальными линиями показаны значения: 1 -до, 2 -после облучения.

После облучения проводился изохронный отжиг (t = 30 min) образцов на воздухе в диапазоне температур 20–450°С. Для контроля параметров МОП-структур измерялись высокочастотные (1 MHz) вольт-фарадные характеристики, из которых определялись плотность заряда на ловушках в диэлектрике Q_{ot} и плотность поверхностных состояний D_{it} на границе раздела Si/SiO₂ (методом Термана [3]).

Результаты представлены на рисунке. "Средняя" плотность $\langle D_{it} \rangle$ на рисунке, *b* соответствует интегральной плотности $D_{it}(E)$ в запрещенной зоне кремния E_g в интервале энергий ± 0.2 eV относительно середины E_g на границе Si/SiO₂. Из рисунка, *a* видно, что в процессе отжига заряд в диэлектрике достигает исходных (до облучения) значений уже при $\sim 80^{\circ}$ С и продолжает снижаться вплоть до температур 250–270°С, так

Письма в ЖТФ, 1999, том 25, вып. 16

что минимальное значение плотности заряда оказывается более чем в 2 раза ниже, чем в необлученных образцах. Дальнейшее увеличение температуры приводит к росту заряда и восстановлению его до начального значения при ~ 450°C.

Плотность поверхностных состояний $D_{it}(E)$ на межфазной границе Si/SiO₂ в пределах E_g кремния до облучения имеет стандартный U-образный вид с широким минимумом посредине зоны. В результате α -облучения $D_{it}(E)$ резко возрастает по всей ширине E_g , сохраняя форму. Как видно из рисунка, b, в процессе отжига интегральная плотность $\langle D_{it} \rangle$, вычисленная в окрестности середины E_g ($\pm 0.2 \text{ eV}$), непрерывно спадает с повышением температуры, причем максимальная крутизна спада приходится на температуры 250–270°С, соответствующие положению минимума на кривой $N_{ot}(T)$. При увеличении температуры до ~ 450°С плотность межфазных состояний D_{it} , равно как и плотность заряда Q_{ot} , возвращается к исходному значению, что может свидетельствовать о сходстве, взаимосвязанности физических процессов, определяющих релаксацию величин Q_{ot} и D_{it} при пострадиационном отжиге.

Мы полагаем, что приведенные выше зависимости являются главным образом следствием интенсивного дефектообразования в структуре Si-SiO₂ под действием α -облучения, усиливаемого наличием значительных механических напряжений на границе Si/SiO₂ [4] и повышенной концентрации водорода в SiO₂ вблизи границы раздела [5]. Радиационные дефекты — ловушки электронов и дырок в SiO₂ — создаются в результате атомных смещений и разрыва связей Si-Si и Si-O, а также связей Si-H и Si-OH с высвобождением атомов водорода, которые пассивировали межфазные поверхностные состояния. Последнее приводит к созданию P_b-центров, основных источников межфазных состояний, и одновременно к генерации зарядов Q_{ot}^+ и Q_{ot}^- на ловушках в SiO₂, образованных радиационными дефектами. Положительный заряд Q_{ot}^+ складывается из заряда захваченных дырок, а также протонов, сосредоточенных в основном вблизи границ Si/SiO2 и Al/SiO2 [5]. При отжиге этот заряд быстро релаксирует за счет туннельных и термоэмиссионных процессов с участием валентных электронов [6], инициирования прыжковой проводимости дырок в SiO_2 , захвата протонов обратно на разорванные связи и отжига самих радиационных дефектов.

Что касается отрицательного заряда Q_{ot}^- , то более подвижные электроны в SiO₂ захватываются в меньшем количестве, чем дырки,

Письма в ЖТФ, 1999, том 25, вып. 16

что подтверждается знаком суммарного заряда после облучения. Из исследований с оптическим заряжением структур Si–SiO₂ известно (см., например, [7]), что отрицательный заряд в них отжигается с заметной задержкой по температуре. В *n*-Si, как в нашем случае, задержка может быть обусловлена компенсацией уходящих с ловушек электронов их притоком из зоны проводимости кремния. Необходимый для этого n^+ -слой на границе с SiO₂ создается повышенной концентрацией фосфора вблизи этой границы.

Если сложить две вышеописанные зависимости $Q_{at}^+(T)$ и $Q_{at}^-(T)$, мы получим суммарную кривую с минимумом, как на рисунке, *а*. Дополнительные измерения этих же структур, подвергнутых облучению β -частицами от источника Sr⁹⁰ + Y⁹⁰, дали аналогичные результаты, что указывает, по-видимому, на важность ионизационных и подпороговых механизмов дефектообразования, включая и генерацию дефектов в результате релаксации механических напряжений в Si–SiO₂ [4].

Список литературы

- [1] Devine R.A.B. // IEEE Trans. Nucl. Sci. 1994. V. 41. № 3. P. 452–459.
- [2] Oldham T.R., McLean F.B., Boesch H.E.Jr. et al. // Semicond. Sci. Technol. 1989.
 V. 4. P. 986–999.
- [3] Winokur P.S., Schwank J.R., McWhorter P.J. et al. // IEEE Trans. Nucl. Sci. 1984. V. 31. N 6. P. 1453–1460.
- [4] Першенков В.С., Попов В.Д., Шальнов А.В. Поверхностные радиационные эффекты в элементах интегральных микросхем. М.: Энергоатомиздат, 1988. 256 с.
- [5] Горелкинский Ю.В., Невинный Н.Н., Люц Е.А. // Поверхность. 1994. N 6. С. 79-84.
- [6] McWhorter P.J., Miller S.L., Miller W.M. // IEEE Trans. Nucl. Sci. 1990. V. 37. N 6. P. 1682–1689.
- [7] Вавилов В.С., Киселев В.Ф., Мукашев Б.Н. Дефекты в кремнии и на его поверхности. М.: Наука, 1990. 216 с.

Письма в ЖТФ, 1999, том 25, вып. 16