06;12

Электрические свойства диодов Шоттки на высокоомных кристаллах CdTe

© В.О. Украинец, Г.А. Ильчук, Н.А. Украинец, Ю.В. Рудь, В.И. Иванов-Омский

Государственный университет "Львовская политехника" Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 15 марта 1999 г.

Проведено измерение высоты барьера Шоттки на монокристаллах, легированных галогенами Cl, Br, J в процессе выращивания методом химических транспортных реакций, посредством предлагаемой модификации авторами F(V)-функции [2].

Теллурид кадмия относится к числу наиболее перспективных материалов для создания высокоэффективных счетчиков проникающей радиации [1,2]. В плане реализации этой возможности многие годы ведутся исследования по получению полуизолирующих монокристаллов этого соединения введением в расплав хлора из паровой фазы. В последнее время было установлено, что полуизолирующий теллурид кадмия можно получить и методом химических транспортных реакций (XTP), когда галогены сами участвуют в процессе роста как составная компонента используемых при этом носителей [3]. Данная работа является частью этого цикла исследований и направлена на решение проблемы характеризации легированного галогенами высокоомного вещества и конкретно на определение параметров барьеров Шоттки на основе таких монокристаллов.

Следствием большого последовательного сопротивления диода Шоттки есть нарушение линейности вольт-амперной характеристики (ВАХ) в полулогарифмическом масштабе $\ln I = f(V)$, используемой, в частности, для определения высоты барьера.

Влияние последовательного сопротивления на ВАХ диода Шоттки на *n*-Si с термоэмиссионным механизмом тока анализировалось Норде [4]. Он предложил представить экспериментальную ВАХ в форме

23

зависимости

24

$$F(V) = \frac{V}{2} - \frac{kT}{q} \ln \frac{I}{AA^{**}T^2},$$
(1)

графическая обработка которой позволяет определить высоту барьера φ_B со стороны металла и величину последовательного сопротивления структуры. Здесь V — напряжение, приложенное к диоду; I — ток; A^{**} — константа Ричардсона; A — площадь барьера; F(V) — функция Норде; T — абсолютная температура; k — постоянная Больцмана, q — элементарный заряд.

В нашей работе исследовались диоды Me(In,Sn)–*p*-CdTe $(p = 10^8 - 10^{10} \text{ cm}^{-3}, T = 293 \text{ K})$ с большим сопротивлением базы, которые принципиально отличаются от [4] диффузионным механизмом протекания тока, обусловленным низкой подвижностью дырок в *p*-CdTe $(\mu_p \leq 50 \text{ cm}^2/(\text{V} \cdot \text{s}))$. ВАХ таких структур в координатах $\ln I = f(U)$ нелинейны, а определение сопротивления базы из I-V-зависимости приводит к неоднозначным результатам. Таким образом, поиск оптимальных методик обработки I-V-зависимостей для определения параметров структуры на высокоомных материалах может быть отнесен к ряду актуальных проблем.

Для измерения высоты барьера структур Me(In,Sn)–p-CdTe мы модифицировали выражения (1) на случай барьеров с диффузионным механизмом прохождения тока. Известно, что в диффузионной теории перехода металл–полупроводник плотность тока насыщения j_{SD} выражается соотношением [5]

$$j_{SD} = q p_{\infty} \mu_p \frac{V_D}{w} \exp\left(-\frac{\varphi_b}{kT}\right).$$
⁽²⁾

Здесь p_{∞} — концентрация дырок в объеме *p*-CdTe; *w* — ширина области пространственного заряда; φ_b — высота барьера для дырок полупроводника [6] (рис. 2, *b*), которая связана с диффузионным потенциалом V_D формулой

$$\varphi_b = q V_D. \tag{3}$$

Применяя формализм, аналогичный (1), обозначим множитель перед экспонентой в (2) через *A*_D, так что

$$A_D = q p_\infty \mu_p \frac{V_D}{w}.$$
 (4)

25

Рис. 1. Экспериментальные F(V)-зависимости двух Sn-*p*-CdTe-диодов Шоттки D1 и D2 (кривые 1 и 2 соответственно), которые отличаются материалом *p*-CdTe (*a*), и эволюция F(V)-функции диода D2 в процессе уточнения значения диффузионного потенциала (*b*).

Рис. 2. Температурные зависимости дифференциального сопротивления при нулевом смещении диодов D1, D2 (*a*) и энергетическая модель барьера Me-*p*-CdTe (φ_b — высота барьера для дырок *p*-CdTe и φ_B — для дырок металла) (*b*).

Тогда функцию Норде (1) можно модифицировать на случай диффузионного механизма тока и при этом она примет форму

$$F(V) = \frac{V}{2} - \frac{kT}{q} \ln \frac{I}{AA_D}.$$
(5)

Графическое представление результатов измерений I-V-зависимости структур с диффузионным механизмом тока в форме (5) позволит определить высоту барьера φ_b со стороны полупроводника в отличие от (1), с помощью которой определялась высота барьера со стороны металла φ_B [6] (рис.2, b). На этом пути, однако, возникает затруднение,

27

Сопоставление параметров диодов Шоттки Sn-p-CdTe, полученных из: обработки экспериментальных BAX*, обработки $F(V)^{**}$, температурной зависимости дифференциального сопротивления R_0^{***}

Диоды	V_I^*, V	φ_b^{**} , eV	$\varphi_{b,R}^{***}$, eV	r^*, Ω	r^{**}, Ω
D1	0.19	0.31		210	400
D2	0.18	0.25	0.265	200	560
		0.26•			
D3	0.10	0.25	0.24	$3 \cdot 10^3$	$3.2 \cdot 10^{3}$

• уточненное значение φ_b , полученное при повторном построении F(V).

обусловленное тем, что φ_b непосредственно входит в уравнения (4) и (5). Его можно обойти, если для определения V_D в (4) воспользоваться приближением $V_D = V_I$. Здесь V_I — напряжение токовой отсечки прямой части ВАХ в координатах I, V. Поскольку величина A_D находится под логарифмом в (5), то использование упомянутого приближения приведет только к ошибке второго порядка малости при определении φ_b из F(V)-зависимости.

Нами произведена проверка эффективности использования предложенной модификации функции F(V) (5) с целью определения параметров диодов Me(In,Sn)-p-CdTe. Построенные на основе экспериментальных ВАХ этих диодов F(V)-зависимости показаны на рис. 1, а (графики 1, 2). При этом численные значения p_{∞} и w для подстановки в (4) определялись из измерений дифференциальной емкости барьеров и ее зависимости от напряжения смещения, а VD принималось равным токовой отсечке ВАХ V_{I} . Как видно из рисунка, на графиках 1, 2 наблюдается характерный для F(V)-функции минимум. По координатам этого минимума аналогично [1] нами определены значения высоты барьера φ_b и сопротивления базы r, которые приведены в таблице. Из нее видно, что имеет место существенная разница в численных значениях φ_b и V_I . Для дополнительного уточнения значения φ_b произведено повторное построение F(V)-зависимости для диода D2 с использованием в расчете предварительно полученного значения $\varphi_b = 0.25 \, \text{eV}$ (рис. 1, *b*, кривые 2 и 2'). При этом получено $\varphi_b = 0.26 \text{ eV}$, что только на 0.01 eV отличается от результата, полученного с использованием приближения $V_D = V_I$.

Проведено сопоставление результатов, полученных с использованием предложенной методики, с результатами измерений температурной зависимости дифференциального сопротивления диода при нулевом смещении (рис. 2, *a*) по методике [7] (см. таблицу). Видно, что с точностью до 0.01 eV наблюдается совпадение значений φ_b , полученных независимо каждым из методов. Однако имеет место существенное расхождение значения *r* с тем, которое достаточно приближенно оценено из ВАХ. Можно предположить, что одной из причин такого расхождения является инжекция носителей в барьерах Me-*p*-CdTe. которая проявляется в специфическом поведении дифференциальной емкости и ВАХ в области положительных смещений $V \ge V_D$.

Таким образом, на основе развитого нами метода газофазного выращивания монокристаллов полуизолирующего CdTe созданы барьеры Шоттки с диффузионным механизмом прохождения тока, перспективные для разработок высокоэффективных полупроводниковых детекторов ядерного излучения.

Список литературы

- [1] Аркадьева Е.Н., Матвеев О.А., Рудь Ю.В., Рывкин С.М. // ЖТФ. 1966.
 Т. 36. С. 1146–1148.
- [2] Agrinskaya N.V. // Mater. Sci. Eng. B. 1993. V. 16. C. 172-175.
- [3] Ilchuk G., Ukrainets N., Datsko B., Ukrainets V. // Abstracts ICCG 12 ICVG 10. 1998. Jerusalem, Israel. P. 311.
- [4] Norde H. // J. Appl. Phys. 1979. V. 50. P. 5052-5057.
- [5] *Родерик Э.Х.* // Контакты металл-полупроводник. М.: Радио и связь, 1982. 208 с.
- [6] Панков Ж. // Оптические процессы в полупроводниках. М.: Мир, 1973. 456 с.
- [7] Паничевская В.И., Стриха В.И. // Радиотехника и электроника. 1975. Т. 20. С. 1559–1560.