05;07;12

Реальная структура монокристаллов пирохлора Cd₂Nb₂O₇

© И.Л. Шульпина, Н.Н. Колпакова, М.П. Щеглов, А.О. Лебедев

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 23 апреля 1999 г.

Методами рентгеновской топографии и дифрактометрии исследована кристаллическая структура пирониобата кадмия $Cd_2Nb_2O_7$ при комнатной температуре. Получены параметры структурного совершенства кристаллов, выращенных с разной степенью легирования примесями. Проведен анализ характера нарушений кристаллической решетки в зависимости от типа и концентрации примеси.

Пирониобат кадмия Cd₂Nb₂O₇ по структурному типу относится к пирохлорам (общая формула $A_2B_2O_7$, пр. группа Fd3m- O_h^7) и является единственным примером соединения, в котором наблюдается фазовый переход ($\Phi\Pi$) в сегнетоэлектрическое состояние ($T_c = 196 \, \text{K}$) из столь высокосимметричной пространственной группы [1]. Особенность этого ФП состоит в том, что ниже T_c одновременно с упорядоченным (сегнетоэлектрическим) состоянием появляется неупорядоченное (релаксаторное) состояние [2]. Возникновение неупорядоченного состояния в системе и его эволюция с температурой обусловлены постепенным "замораживанием" нецентральных смещений ионов Cd²⁺, которые при комнатной температуре (параэлектрическая фаза) локализованы в $(CdO_8)^{n-}$ подрешетке динамически [2,3]. Примеси и дефекты решетки усиливают релаксаторные свойства неупорядоченных систем [4,5], однако механизм такого поведения систем не установлен. Для выяснения макроскопического механизма структурной неупорядоченности и причин сосуществования неупорядоченного и упорядоченного состояний в сегнетоэлектрической фазе (T < T_c) необходим детальный анализ нарушений структуры кристаллов Cd₂Nb₂O₇ в предшествующей фазе $(T > T_c)$. Ранее подобные исследования соединений со структурой пирохлора не проводились. Это обстоятельство и определило постановку настоящей работы.

26

Кристаллы пирониобата кадмия $Cd_2Nb_2O_7$ без примесей и с легирующими примесями были выращены методом спонтанной кристаллизации с использованием борной кислоты в качестве катализатора. Кристаллы без легирующих примесей, выращенные в разных опытах, имели разную окраску (бесцветные, желтые, оранжевые и краснокоричневые) [5]. Легированные кристаллы отличались сортом примеси (Fe, Ni, Cu, Zn, Gd) и ее концентрацией ($0.02 \le x \le 0.2$). Окраска их изменялась в зависимости от примеси. Так, для кристаллов с Gd и Zn характерна светло-желтая и желтая окраска, с Cu — красно-коричневая, с Fe и Ni — оранжевая и оранжево-коричневая окраска.

Рентгеноструктурный анализ контрольных образцов легированных и нелегированных кристаллов методом порошковой дифрактометрии с применением внутреннего Si-стандарта (ДРОН-1, CuK_{α}-излучение) показал, что их структура соответствует структуре пирохлора [1,3]. Присутствие другой фазы в кристаллах не обнаружено.

Нарушения структуры кристаллов исследованы методами рентгеновской топографии и дифрактометрии при комнатной температуре. Для топографических исследований использовался метод обратного отражения (метод Берга–Баррета–Ньюкирка) в CuK_{α}-излучении и трансмиссионный метод Ланга в МоК_{α}-излучении в серии как симметричных, так и асимметричных отражений [6]. Кривые дифракции были получены в двух- и трехкристалльном режимах регистрации [7,8] (θ и $\theta/2\theta$ сканирование соответственно) в рефлексе 444 CuK_{α}-излучения для Cd₂Nb₂O₇. В качестве монохроматора и анализатора применялись монокристаллы Ge (рефлекс 400).

Для исследования были выбраны образцы в виде пластинок ориентации $(111)_{cub}$ с линейными размерами от 2 до 10 mm и толщиной от 0.2 до 2 mm. Измерения проводились на пластинках с естественными поверхностями без дополнительной обработки, а также на тонких плоскопараллельных пластинках, поверхности которых обрабатывались механически с последующей химической полировкой в смеси ортофосфорной и уксусной кислоты. (Примеры топограмм приведены на рис. 1 и 2).

Значения полуширины кривых отражения ω_{θ} и $\omega_{\theta/2\theta}$ для нелегированных и легированных кристаллов приведены в табл. 1 и 2. Там же приведены значения параметра решетки *d*, рассчитанные из значений углов $2\theta_B$, полученных трехкристальным методом [8]. Относительная погрешность определения параметра решетки составляла $\Delta d/d \sim 1 \cdot 10^{-5}$, что обусловлено аппаратурной точностью углового отсчета ($\pm 1''$).

Рис. 1. Рентгеновская топограмма нелегированного кристалла (7) с изображением ячеистой дислокационной структуры, полученная методом Ланга в Мо К α -излучении.

Большие значения полуширины кривых ω_{θ} для всех исследованных кристаллов свидетельствуют о том, что их структура не является совершенной. В соответствии со значениями ω_{θ} исследованные кристаллы по структурному совершенству можно условно разделить на три группы. В бесцветных и слабоокрашенных кристаллах (кристаллы 5–9, табл. 1) структура является наиболее дефектной (большие значения ω_{θ}). Интенсивно окрашенные кристаллы без легирующих примесей (кристаллы 1–4, табл. 1), а также кристаллы с низкой концентрацией легирующих примесей (x < 0.1, табл. 2) независимо от сорта примеси

Рис. 2. Рентгеновская топограмма легированного кристалла, полученная методом Ланга. М = Gd, *x* = 0.1.

имеют наиболее совершенную структуру. Для этой группы кристаллов характерны минимальные значения ω_{θ} (например, кристалл 1 в табл. 1 и кристаллы с примесью Zn в табл. 2). При увеличении концентрации легирующих примесей ($x \ge 0.1$) структура кристаллов становится более дефектной, о чем свидетельствуют большие значения ω_{θ} . Наиболее сильно совершенство структуры нарушается в кристаллах с примесями Cu и Fe (табл. 2).

Среднее значение параметра решетки исследованных кристаллов $d \sim (10.3728 \pm 0.0014)$ Å соответствует значению, характерному для соединений со структурой пирохлора [1,3]. Разброс значений d носит случайный характер и не связан с легированием или с совершенством структуры кристаллов. Например, в табл. 1 для кристалла 1 с наименьшим значением полуширины ω_{θ} и кристалла 9 с наибольшим значением ω_{θ} параметры решетки практически совпадают, тогда как для кристаллов 5 и 7, сравнимых по степени дефектности структуры, значения параметра решетки существенно различаются. То же самое наблюдается для легированных кристаллов в табл. 2 (например, кристаллы с примесью Zn и Fe при x = 0.1 или кристаллы с примесью Ni при x = 0.1 и примесью Fe при x = 0.2).

N₂	Кристалл	$\omega_ heta, { m s}$	$\omega_{ heta/2 heta},{ m s}$	d, Å
1	Светло-коричневый	23	10	10.3722
2	Оранжевый	30	20	10.3728
3	"	48	16	10.3721
4	Золотисто-коричневый	49	30	10.3734
5	Бесцветный	70	35	10.3728
6	Бесцветный	70	35	10.3719
7	Светло-желтый	70	35	10.3714
8	Беловатый	120	70	10.3714
9	Светло-желтый	180	43	10.3720

Таблица 1. Характеристики нелегированных кристаллов Cd₂Nb₂O₇

Таблица 2. Характеристики легированных кристаллов

	Концентрация примеси, х											
	0.02			0.05		0.1			0.2			
Примесь М	$egin{array}{c} \omega_{ heta},\ { m s} \end{array}$	$\omega_{ heta/2 heta}, \ {f s}$	d, Å	$egin{array}{c} \omega_{ heta},\ { m s} \end{array}$	$\omega_{ heta/2 heta}, \ {f s}$	d, Å	$egin{array}{c} \omega_{ heta}, \ {f s} \end{array}$	$\omega_{ heta/2 heta}, \ {f s}$	d, Å	$egin{array}{c} \omega_{ heta},\ \mathbf{s} \end{array}$	$\omega_{ heta/2 heta}, \ {f s}$	d, Å
Zn ²⁺ (0.83)*	50 22	40 10	10.3717 10.3719				60 22	40 20	10.3726 10.3722	120 70	60 35	10.3723 10.3721
Ni ²⁺ (0.74)*	40	25	10.3720	30 35	23 18	10.3722 10.3716	60 90	25 35	10.3717 10.3716			
${ m Fe}^{2+}$ (0.80) ^{<i>a</i>*}	35	21	10.3720	20 42	18 23	10.3715 10.3725	120 28	50 20	10.3723 10.3719	60	29	10.3715
Cu^{2+} (0.80) ^{b*}	45 25	25 18	10.3716 10.3718				180 200	60 60	10.3716 10.3714	95 210	20 60	10.3726 10.3742
${ m Gd}^{3+}$ (0.94)*				50	28	10.3715						

 $^{a}_{b}$ Ионный радиус ${\rm Fe}^{3+}$ соответствует 0.67 Å. $^{b}_{b}$ Ионный радиус ${\rm Cu}^{1+}$ соответствует 0.98 Å.

Таким образом, исследованные кристаллы характеризуются высокой чувствительностью полуширины дифракционных кривых ω_{θ} и $\omega_{\theta/2\theta}$ к искажениям решетки, при которых параметр решетки остается практически неизменным. Отметим, что изменение полуширины кривых $\omega_{\theta/2\theta}$ связано со смещением атомов в узлах решетки при деформации типа сжатия-растяжения и наличием дислокаций, влияющих на флуктуации параметра d, тогда как изменение полуширины кривых ω_{θ} зависит еще и от вклада нарушений ориентационного характера (деформационный изгиб, микроблочность, мелкоячеистая дислокационная структура и т.п.). Увеличивающаяся разница между значениями ω_{θ} и $\omega_{\theta/2\theta}$ в кристаллах с более дефектной структурой пирохлора (табл. 1 и 2) указывает на то, что нарушения ориентационного характера становятся в них преобладающими. Это особенно проявляется в бесцветных и слабоокрашенных нелегированных кристаллах и в легированных кристаллах при концентрации примеси $x \ge 0.1$.

Топограммы, полученные методом обратного отражения в СиК_{*α*}-излучении, показали, что в исследованных кристаллах блоки и малоугловые границы отсутствуют. Однако изображение дислокационной структуры на этих топограммах получается размытым или вовсе отсутствует, что связано с высоким поглощением рентгеновского излучения (большая величина критерия выявляемости g > 0.2, характеризующего отношение глубины дислокаций поглощения к длине экстинкции [9]). Поэтому были получены топограммы тонких образцов трансмиссионным методом Ланга с применением МоК_а-излучения. Обнаружено, что дислокационная структура нелегированных кристаллов имеет однородный ячеистый характер с линейным размером ячеек от 10 до 50 µm (рис. 1). Плотность дислокаций изменяется в пределах от 10⁴ сm⁻² для интенсивно окрашенных криталлов до 5 · 10⁵ ст⁻² для бесцветных и слабоокрашенных кристаллов. В слаболегированных кристаллах (x < 0.1) дислокационная структура тоже имеет однородный ячеистый характер, но плотность дислокаций меньше, чем в нелегированных кристаллах, что соответствует более высокому совершенству структуры слаболегированных кристаллов. Это подтверждается и близкими по величине значениями полуширины кривых отражения данной группы кристаллов (табл. 1 и 2). Для кристаллов с более высокой концентрацией примеси ($x \ge 0.1$) изображение дефектной структуры

на топограммах становится менее четким (рис. 2). Этот факт в сочетании с данными табл. 2 (увеличение полуширины кривых ω_{θ} и $\omega_{\theta/2\theta}$) свидетельствует об увеличении дефектности кристаллической структуры при $x \ge 0.1$. В частности, нарушения структуры могут быть вызваны точечными дефектами, образующимися в результате вхождения части примеси в междоузлия. Тенденция к созданию таких дефектов в кристаллах Cd₂Nb₂O₇ при увеличении концентрации примеси заложена в структуре пирохлора [10,11].

Общим свойством вводимых примесей M²⁺ является то, что их ионные радиусы значительно меньше ионного радиуса Cd^{2+} (0.99Å), который является минимальным для образования структуры пирохлора [10]. Кроме того, в случае примеси с переменной валентностью (например, Cu и Fe) не только ионный радиус, но и заряд может отличаться от иона Cd²⁺. В соответствии с условием стабильности структуры пирохлора, которое накладывает ограничения на степень деформации (CdO₈)^{*n*-} и (NbO₆)^{*n*-} структурных подрешеток [11], эти факты подразумевают, с одной стороны, что ион Cd^{2+} в $(CdO_8)^{n-}$ подрешетке может быть замещен как ионом примеси M²⁺, так и одновременно ионом примеси M^{2+} и ионом бора B^{3+} (0.20Å) [5]. С другой стороны, только небольшое количество примеси M²⁺ может войти в (CdO₈)ⁿ⁻ подрешетку в качестве примеси замещения, а остальная ппримесь входит в междоузлия, нарушая совершенство структуры. Поскольку при x < 0.1 кристаллы Cd_{2-x}M_xNb₂O₇ с легирующими примесями имеют минимальные значения полуширины дифракционных кривых (табл. 2), введенная примесь является преимущественно примесью замещения. В этом случае изменение окраски легированных кристаллов связано с конкретной введенной примесью замещения. Зависимость окраски легированных кристаллов от типа примеси позволяет сделать вывод о том, что окраска нелегированных кристаллов тоже связана с присутствием в них примеси замещения, однако в этом случае примесь является случайной (например, В³⁺, Fe²⁺, V²⁺ и др. [5]). Присутствие случайных примесей свойственно для всех нелегированных кристаллов, но в бесцветных кристаллах примесь преимущественно входит в междоузлия, вызывая значительные нарушения структуры (кристаллы 5-9 в табл. 2). Аналогичные нарушения структуры наблюдаются и в легированных кристаллах с концентрацией примеси $x \ge 0.1$, где междоузельное положение примеси становится доминирующим. Другой причиной нарушения структуры кристаллов могут быть дефекты типа

вакансий по иону Cd^{2+} или типа примесей замещения бо́льшего радиуса, чем ион Cd^{2+} (например, Pb^{2+} , $(Cd^{2+} + B^{3+})$ и др.) [5,10]. В заключение отметим, что хотя природа дефектов и нарушений структуры в кристаллах $Cd_2Nb_2O_7$ требует дальнейшего изучения, высокая чувствительность их структурных характеристик к искажениям решетки указывает на перспективность исследования совершенства структуры методами рентгеновской дифракции не только пирохлоров, но и вообще сегнетоэлектриков и релаксаторов.

Работа выполнена при финансовой поддержке РФФИ (проекты 97-02-18099 и 98-02-18309).

Список литературы

- [1] Landolt-Börnstein New Series. (Berlin: Springer). 1981. Group III. V. 16a.
- Kolpakova N.N., Wiesner M., Kugel G., Bourson P. // Ferroelectrics. 1997.
 V. 201. N 1–4. P. 107–115.
- [3] Lukaszewicz K., Pietraszko A., Stepien-Damm A., Kolpakova N.N. // Mater. Research Bull. 1994. V. 29. N 9. P. 987–992.
- [4] Chu F., Reaney I.M., Setter N. // J. Am. Ceram. Soc. 1995. V. 78. N 7. P. 1947– 52.
- [5] Колпакова Н.Н., Виснер М., Лебедев А.О., Сырников П.П., Храмцов В.А. // Письма в ЖТФ. 1998. В. 24. № 17. С. 36–44.
- [6] *Лэнг А.Р.* Дифракционные и микроскопические методы в материаловедении / Пер. с англ. М.: Металлургия, 1984. 364 с.
- [7] Бушуев В.А., Кютт Р.Н., Хапачев Ю.П. // Физические принципы рентгенодифрактометрического определения параметров реальной структуры многослойных эпитаксиальных пленок. Нальчик: Изд-во Каб.-Балк. гос. унта, 1996. 178 с.
- [8] Fewster P. // J. Appl. Cryst. 1982. V. 15. N 3. P. 275-278.
- [9] Shulpina I.L., Argunova T.S. // J. Phys. D: Appl. Phys. 1995. V. 28. P. A47-A49.
- [10] Jona F., Shirane G., Pepinsky R. // Phys. Rev. 1955. V. 98. N 4. P. 903-909.
- [11] McCauley R.A. // J. Appl. Phys. 1980. V. 51. N 1. P. 290-298.