10;12 Гиперболоидный масс-спектрометр на усеченной ловушке

© Е.В. Мамонтов, Д.А. Ивлев

Рязанская государственная радиотехническая академия

Поступило в Редакцию 8 декабря 1997 г.

Предложен гиперболоидный масс-спектрометр с анализатором на ограниченной плоскостью z = 0 трехмерной ионной ловушке. На основе численного моделирования электрического поля и процесса сортировки заряженных частиц построены массовые пики для различных режимов работы масс-анализатора. Полученные результаты являются основой для создания гиперболоида массспектрометра с простой электродной системой и высокой разрешающей способностью.

В гиперболоидных масс-спектрометрах (ГМС) в качестве анализаторов частиц по удельному заряду используются квадрупольные фильтры масс и ионные ловушки [1]. Электродные системы таких анализаторов сложны в изготовлении и сборке. Монопольный анализатор имеет упрощенную конструкцию электродной системы, но разрешающая способность прибора ограничена. Предложенный анализатор на усеченной ионной ловушке позволяет создавать ГМС с простой конструкцией электродной системы и высокими аналитическими параметрами, а также эффективно решать проблемы ввода и вывода ионов.

Электродная система анализатора (рис. 1) составляет половину электродной системы ионной ловушки, расположенную в полусфере z > 0. Она состоит из двух последующих гиперболоидных электродов I и 2 с минимальными расстояниями Z_0 и R_0 от начала координат ($Z_0 = 5R_0$) и экранирующего электрода 3. Идеальное распределение потенциала в анализаторе, без учета ограниченности электродной системы, описывается выражением

$$\Phi(z,r) = \frac{(\Phi_1 - \Phi_2)(z^2 - r^2/2) + \Phi_1 R_0^2/2 + \Phi_2 Z_0^2}{Z_0^2 + R_0^2}.$$
 (1)

Отверстие в кольцевом электроде 2 позволяет перед началом сортировки вводить в анализатор ионы, а после ее завершения отсортированные

51

Рис. 1. Электродная система анализатора.

ионы выводить на регистрацию. Пространство сортировки усеченной ловушки по координате *z* ограничено положительными значениями, и заряженные частицы под действием ВЧ-поля могут совершать в ней только однополярные колебания $z(t) \ge 0$. В поле с квадратичным распределением потенциала (1) такого рода колебания соответствуют границе $a_0(q)$ диаграммы стабильности и описываются соотношением [2]

$$z(t) = Ace_0(t, q) + Bfe_0(t, q),$$
(2)

где $ce_0(t,q)$ и $fe_0(t,q)$ — периодическое и непериодическое решения нулевого порядка уравнения Хилла, A и B — параметры, зависящие от начальных координаты z_0 и скорости ν_0 заряженных частиц. Сортировка частиц по удельному заряду в этом случае может быть осуществлена по одной координате [3]. При ограничении объема ловушки в области $z < 2R_0$ распределение потенциала заметно отличается от (1) и характер траекторий ионов легких масс $m < m_0$ (m_0 — масса анализируемых ионов) изменяется, так как в процессе сортировки они попадают в область нелинейных искажений. Эффективность одномерной сортировки снижается и представляет интерес осуществление в однополярном анализаторе режима двумерной сортировки ионов.

Для оценки аналитических возможностей указанного режима осуществлялось моделирование на ЭВМ процесса сортировки заряженных частиц в усеченной ловушке с параметрами: $Z_0 = 32 \,\mathrm{mm}, R_0 = 6 \,\mathrm{mm},$ $D = 80 \, {\rm mm}$. Пространство сортировки анализатора (активная зона 4) ограничивалось цилиндром с радиусом R_0 . На первом этапе моделировалось электрическое поле в анализаторе при фиксированных потенциалах Φ_1, Φ_2, Φ_3 на торцевом 1, кольцевом 2 и экранирующем 3 электродах и определялось отклонение потенциала $\Delta \Phi(z, r)$ в активной зоне от идеального значения. По величине $\Delta \Phi(z, r)$ активная зона разделена на области с существенными и несущественными искажениями поля. В области $2R_0 \leq z \leq Z_0$ при оптимальном значении потенциала $\Phi_2 = 0.275 \Phi_1$ на экранирующем электроде погрешность распределения потенциала не превышает величины $0.4 \cdot 10^{-4} \Phi_1$ и практически не влияет на траектории ионов при разрешении ГМС в несколько тысяч. В области существенных искажений $0 \leq z \leq 2R_0$ отклонение потенциала от (1) для указанных параметров анализатора аппроксимировалось функцией

$$\Delta \Phi(z,r) \approx -7.7 \cdot 10^{-3} \Phi_1 \exp(-14.5z/Z_0) \exp(-70r^2/R_0^2).$$
(3)

Вторым этапом моделирования явился расчет траекторий ионов и массовых пиков анализатора с учетом погрешности распределения потенциала (3) при воздействии на заряженные частицы ВЧ-поля. ВЧ-поле создавалось разностью потенциалов $\Phi_0(t) = \Phi_1 - \Phi_2$ между полеобразующими электродами. Использовалось импульсное питающее напряжение $\Phi_0(t) = U + V\psi(\omega t)$ с начальной фазой $\varphi_{02} = \pi/2$, где U и V — постоянная составляющая и амплитуда ВЧ-напряжения, $\psi(\omega t)$ — нормированная периодическая функция. Перед началом сортировки устанавливались $\Phi_1 = \Phi_2 = \Phi_{\mathfrak{I}} = 0$ и в анализатор вводились ионы с начальными координатами $z_0 = 2R_0$ и тепловыми начальными скоростями ν_0 . В этом случае параметры ионов z_0 и ν_0 оказывались согласованными с начальной фазой $\varphi_{02} = \pi/2$ ВЧ-напряжения [4]. Траектории заряженных частиц по координатам z и r рассчитывались путем численного решения нелинейных уравнений II порядка с периодическими коэффициентами

$$\frac{d^2 z}{dt^2} + \left[a + 2q\phi(\omega t)\right] \left(z + k\frac{\partial\Delta\Phi}{\partial z}\right) = 0,$$

$$\frac{d^2 r}{dt^2} - \left[a/2 + q\phi(\omega t)\right] \left(r + k\frac{\partial\Delta\Phi}{\partial r}\right) = 0,$$
 (4)

Рис. 2. Траектории ионов с $m = 0.99m_0$; a — в идеальном поле, b — в поле с нелинейными искажениями, $\lambda = 0.33$.

где *а* и *q* — параметры сортировки, зависящие от размера Z₀ анализатора и параметров U, V, ω и формы ВЧ-напряжения, $k = (Z_0^2 + R_0^2/2)/2(\Phi_1 - \Phi_2)$. Установлена особенность движения ионов легких масс $m < m_0$ ($m \approx m_0$) по координате z. Она состоит в том, что знакопеременные в идеальном поле траектории частиц легких масс $m < m_0$ при наличии отклонений потенциала вида (3) становятся однополярными (рис. 2). Это происходит в силу того, что, находясь на начальном этапе сортировки в области идеального поля, ионы с *m* < *m*₀ в дальнейшем смещаются по *z* в область нелинейных искажений с большей, чем у идеального поля, напряженностью поля. В результате ионы, не пересекая оси z = 0, возвращаются в начальную область колебаний. При этом траектории ионов приобретают характер однополярных биений (рис. 2, b) и одномерная сортировка ионов становится неэффективной. В этом случае для фильтрации ионов легких масс целесообразно использовать сортировку по координате r, которая реализуется при работе в вершине І зоны диаграммы стабильности при $\lambda = U/2V$, близких к 0.3455 [1].

Интегральные представления о свойствах масс-анализатора на усеченной ловушке дают массовые пики, полученные на основе расчета

Рис. 3. Массовые пики ГМС на усеченной ловушке. Число периодов сортировки n = 20: $1 - \lambda = 0.33$; $2 - \lambda = 0.34$; $3 - \lambda = 0.344$.

совокупности траекторий 5 · 10³ ионов с различными начальными координатами $z_0 = (0.2 \div 0.35)Z_0, r_0 = -R_0 \div R_0$ и тепловыми начальными скоростями при учете нелинейных искажений поля. Результаты расчетов представлены на рис. 3. Кривая 1 соответствует одномерному режиму сортировки ионов, при которой из-за нелинейных искажений поля эффективность фильтрации ионов легких масс низкая. При этом массовый пик имеет пологий левый склон, а разрешающая способность не превышает 50. Кривые 2, 3 получены при работе анализатора в окрестностях вершины І зоны диаграммы стабильности, где легкие массы отфильтровываются по координате г. При $\lambda = 0.344$ разрешающая способность достигает величины $\rho_{0.5} = 850$. Эффективному удержанию анализируемых частиц (интенсивность пика составляет 20% от максимальной) способствует оптимальная начальная фаза ВЧ-напряжения $\varphi_{02} = \pi/2$, при которой в меньшей степени влияют начальные скорости ионов, а амплитуды колебаний по координате r

стабильных ионов на порядок меньше, чем при других фазах ввода. Оптимизацией параметров анализатора и режима сортировки ионов возможно увеличение разрешающей способности ГМС до нескольких тысяч.

Моделирование процессов сортировки заряженных частиц в гиперболоидном анализаторе типа усеченной ловушки показало возможность создания ГМС с простой электродной системой и высокими аналитическими параметрами.

Список литературы

- March Raymond E., Hughes Richard J. Quadrupole Storage Mass Spectrometry. N. Y.: John Wiley, 1989. 463 p.
- [2] Мак-Лахлан Н.В. Теория и приложения функций Матье. М.: Иностр. лит., 1953. 468 с.
- [3] Мамонтов Е.В. // Изв. Академии наук. Сер. физ. 1998. Т. 62. № 10. С. 2039.
 [4] Mamontov E.V. // Proceedings of 14th Mass Spectrometry Conference. August
- [4] Mamontov E.V. // Proceedings of 14th Mass Spectrometry Conference. August 25–29. Helsinki, 1997. P. 228.