01;06 Феноменологическая модель аномального поведения лавинного шум-фактора в структурах типа металл–диэлектрик–полупроводник

© Н.Е. Курочкин, В.А. Холоднов

Государственное унитарное предприятие НПО "Орион", Москва

Поступило в Редакцию 25 сентября 1998 г.

Предложена модель для объяснения экспериментально наблюдавшегося эффекта: падения лавинного шум-фактора F с ростом среднестационарного коэффициента умножения носителей $M = \langle \tilde{M} \rangle$ в структурах типа металлдиэлектрик-полупроводник (МДП). Основа модели — задержка носителей на гетерогранице (ГГ) за счет захвата либо в потенциальную яму, либо на поверхностные состояния. Результаты расчета численно соответствуют экспериментальным данным.

В работах [1–3] экспериментально обнаружено, что в структурах типа МДП на основе Si *p*-типа *F*, начиная с $M = 10^2 - 10^3$, не увеличивается (даже падает) при увеличении *M*. Такое поведение *F* парадоксально: казалось бы, за счет случайного характера акта ударной ионизации *F* должен всегда расти с ростом *M* [4–7]. В [1–3] лавину инициируют втекающие в область размножения (OP) электроны. Поэтому при $M \gg 1$, согласно классической работе [4], следовало ожидать, что $F \cong kM$ и растет с ростом *M*, где $k(E) \equiv \beta/\alpha$ монотонно возрастающая функция напряженности электрического поля $E \equiv \langle \tilde{E} \rangle$ [5–11], α и β — коэффициенты ударной ионизации электронов и дырок. Согласно же данным экспериментов [1–3], $F \ll kM$ при достаточно больших *M*. Ниже показано, что такое действительно может быть.

Наша модель аномальной зависимости F(M) не связана с флуктуациями потенциала вдоль гетерограницы ГГ [1–3]. Ее основа — захват на некоторое время электронов или потенциальной ямой вблизи ГГ (в SiO₂/Si и TiO₂/Si [1,2] такая яма есть, рис. 1, *a*), или поверхностными состояниями [12]. При нахождении поверхностной плотности захвачен-

70

Рис. 1. Энергетическая диаграмма $\mathcal{E}_c(x)$ дна зоны проводимости структуры вблизи гетерограницы (*a*); электрическая схема (*b*).

ных носителей Ñ_s используем уравнение непрерывности

$$q\frac{d}{dt}\tilde{N}_s = \tilde{I}_{in} - \tilde{I}_{out},\tag{1}$$

где $\tilde{I}_{in} = \tilde{M}\tilde{I}_1$ и $I_{out} = q\tilde{N}_s/\tau$ — плотности токов электронов, соответственно подтекающих к ГГ из ОР узкозонного (*N*) слоя и втекающих в широкозонный (*w*) слой (рис. 1, *a*); \tilde{I}_1 — плотность тока при M = 1; τ характерное время освобождения захваченных носителей; q — заряд электрона.

Напряжение на структуре $V = \tilde{V}_W + \tilde{V}_N$ складывается из напряжений на W- и N-слоях \tilde{V}_W и \tilde{V}_N (рис. 1, *b*). В режиме короткого замыкания (рис. 1, *b*), считая, что N-слой легирован однородно [1–3], а \tilde{E} в W-слое при больших M определяется в основном зарядом $q\tilde{N}_s$ [10,12,13], можно записать:

$$V_N \frac{\delta E_N}{E_N} = -V_W \frac{\delta N_s}{N_s},\tag{2}$$

где δE_N и δN_s — малые (флуктуационные) отклонения от среднестационарных значений $\langle \tilde{N}_s \rangle \equiv N_s$ и $\langle \tilde{E}_N \rangle \equiv E_N$ (\tilde{E}_N — поле в *N*-слое

вблизи ГГ); $V_N = \langle \tilde{V}_N \rangle$, $V_W = \langle \tilde{V}_W \rangle$. Положительная флуктуация $\delta N_s > 0$, как это видно из (2), уменьшает (за счет экранирования зарядом $-q \cdot \delta N_s < 0$ [13,22]) поле в *N*-слое ($\delta E_N < 0$) и, как следствие, понижает интенсивность лавинного процесса.

Поскольку α и β резко падают при уменьшении *E* и увеличении ширины запрещенной зоны [5–11,14], а *E*(*x*) спадает в глубь *N*-слоя, то допустим, что размножение носителей происходит лишь в узкой части области пространственного заряда (ОПЗ) *N*-слоя вблизи ГГ (приближение δ -функции [15]). В этом приближении, используя соотношение Рида [16]

$$\tilde{I}(t) = \frac{1}{\mathcal{L}} \int_{O\Pi 3} [\tilde{I}_n(t, x) + \tilde{I}_p(t, x)] dx, \qquad (3)$$

где \tilde{I}_n и \tilde{I}_p — плотности электронного и дырочного токов в ОПЗ, \mathcal{L} — ее толщина, и пренебрегая малым потоком носителей, втекающих из *W*-слоя в *N*-слой, при $M \gg 1$ можо получить, что плотность тока во внешней цепи

$$\tilde{I}(t) = \frac{1}{T} \bigg(\int_{t-T_N}^{t} \tilde{I}_{in}(t') dt' + \int_{t-T_W}^{t} I_{out}(t') dt' \bigg),$$
(4)

где $T = T_N + T_W$, T_N и T_W — времена пролета дырками и электронами ОПЗ и W-слоя соответственно. Соотношения (2) и (4) позволяют записать $\tilde{I}(t)$ в виде линейного функционала от $\delta N_s(t')$, усредненного по времени T. Это означает, что чем меньше время релаксации флуктуационных отклонений τ_r по сравнению с T, тем меньше флуктуации тока во внешней цепи.

При больших M время τ_r уменьшается с ростом M. Действительно, из линеаризованного уравнения (1) и соотношения (2), представив функцию M(V) в форме Миллера [17–19]

$$M = \frac{1}{1 - (V_N / V_{NB}) s_n(V_N)},$$
(5)

можно получить, что при $M \gg 1$

$$\frac{d}{dt}\delta N_s = -\frac{\delta N_s}{\tau_r}, \qquad \tau_r = \frac{\tau}{1 + (V/V_{NB} - 1)s_{nB}M},\tag{6}$$

где V_{NB} — напряжение пробоя *N*-слоя [5–10,18,19]; s_n (V_N) — показатель степени при втекании в ОР электронов; s_{nB} — значение s_n при

 $V_N \to V_{NB}$, численно рассчитанное в [20]. Аналитические выражения для показателя степени (также и при втекании в ОР дырок), количественно согласующиеся с результатами работы [20] и экспериментальными данными [17,21–25], выведены в работах [18,19]. Уменьшением τ_r с ростом M и обусловлена аномальная зависимость F от M при больших значениях M.

Спектр флуктуаций \tilde{N}_s при отсутствии корреляции между лавинным шумом и шумом втекающих в *W*-слой электронов есть сумма соответствующих спектральных шумов [4–7], умноженная на динамическую функцию системы [5,26]. Поэтому, используя уравнение (6), получим, что

$$\langle (\delta N_s)^2 \rangle (\omega) = (2qI_0kM^3 + 2qI_{out}) \frac{\tau_r^2}{(1 + \omega^2 \tau_r^2)q^2}$$
$$= \frac{2I_0M^2}{q} \cdot (kM + M^{-1}) \frac{\tau_r^2}{1 + \omega^2 \tau_r^2}.$$
 (7)

Дисперсию процессов типа $\tilde{i}(t) = (q/T) \cdot \int_{t-T}^{t} [\tilde{n}(t')/\tau_r] dt'$ можно описать известным выражением Макдональда [26]

$$\langle (\tilde{i} - \langle \tilde{i} \rangle)^2 \rangle = \frac{1}{\pi T} \cdot \left(\frac{q}{\tau_r}\right)^2 \int_0^\infty \frac{\langle (\delta n)^2 \rangle(\omega)}{\omega^2} \cdot [1 - \cos(\omega T)] d\omega.$$
(8)

Если $T_N \ll T_W$ [3,27], то 1-м членом в (4) можно пренебречь. Тогда при

$$M \gg M_a \equiv \frac{V_{NB}}{S_{nB}V_W},\tag{9}$$

учитывая, что в рассматриваемых условиях, как это следует из [18,19],

$$S_{nB} = \frac{4k_B \ln k_B}{k_B - 1},\tag{10}$$

можно получить:

$$F \equiv \frac{\langle (\delta I)^2 \rangle}{\langle \tilde{I} \rangle^2} \cong \frac{k_B}{s_{nB}} \frac{V_{NB}}{V_W} = \frac{k_B^{-1}}{4 \ln k_B} \frac{V_{NB}}{V - V_{NB}},\tag{11}$$

где k_B — значение k вблизи гетерограницы при $V_N \rightarrow V_{NB}$.

Рис. 2. a — теоретическая (1) и экспериментальная (2, [3,27]) зависимости лавинного шум-фактора F от коэффициента умножения носителей M для гетероструктуры SiC/Si. Приведены также использованная при расчете $F_{ih}(M)$ экспериментальная зависимость M от приложенного к структуре напряжения V (3, [3,27]) и зависимость F(M) согласно общеизвестному соотношению Макинтайра [4–7] (4). b — использованная при расчете $F_{ih}(M)$ зависимость отношения k_B дырочного коэффициента ударной ионизации к электронному в кремнии вблизи гетерограницы от концентрации мелких легирующих акцепторов N_A при $V_N \rightarrow V_{NB}$ [7].

Из формулы (11) видно, что *F* падает с ростом *V*, т.е. с ростом *M*. Приведенные в работах [3,27] экспериментальные зависимости M(V)и *F*(*M*) для гетероструктур SiC/Si (рис. 2, *a*) позволяют численно сравнить выводы предложенной выше теории с данными эксперимента. При расчете была использована зависимость k_B от концентрации мелких легирующих акцепторов N_A в Si, представленная на рис. 2, *b* [7]. Из рис. 2, *a* видно, что результаты нашего расчета будут находиться в удовлетворительном количественном согласии с экспериментальными данными, если принять $N_A \cong 5 \cdot 10^{15}$ сm⁻³. Такое значение N_A соответствует уровню легирования кремния в экспериментальных структурах работ [3,27]. Примерно те же значения *F*(*M*), что и в [3,27], наблюдались в работе [1]. Несколько меньшее теоретическое значение *F* = *F*_{th} по сравнению с экспериментальным *F* = *F*_{ex} можно обяснить следующими причинами.

Во-первых, в реальной ситуации показатель степени *s*_B в соотношении Миллера при $V_N \rightarrow V_{NB}$ меньше, чем дает формула (10) [18,19]. Это вызвано способностью дырок также производить ударную ионизацию, что при отсутствии их инжекции из W- в N-слой приближение δ -функции [15] в принципе не может учесть. Во-вторых, при наличии таковой инжекции даже приближение δ-функции приводит к значению $s_B < s_{nB}$ [15,18,19] (в случае заметной инжекции s_B может быть до 4 раз меньше, чем *s*_{nB} [18,19]. В-третьих, при нашем рассмотрении пренебрегалось размножением носителей в W-слое, что (как и пренебрежение размножением носителей в высоколегированной части резко асимметричного p-n-гомоперехода [28]) не всегда допустимо даже при больших различиях в ширинах запрещенных зон W- и N-слоев [29]. Возможно, последними двумя причинами обусловлено примерно в три раза большее значение $F_{ex}(M)$ работы [2] по сравнению со значениями $F_{ex}(M)$ работ [1,3,27] (отметим также, что при $N_A > 10^{16}\,{
m cm^{-3}}$ [2] само значение s_{nB} падает с ростом N_A [18,19]).

Список литературы

- [1] Бурбаев Т.М., Кравченко В.В., Курбатов В.А., Шубин В.Э. // Краткие сообщения по физике. 1990. № 4. С. 19–21.
- [2] Болтаев А.П., Бурбаев Т.М., Калюжная Г.А. и др. // ФТП. 1995. Т. 29. В. 7. С. 1220–1225.
- [3] Bacchetta N., Bisello D., Sadygov Z. et al. // Nucl. Instr. and Meth. in Phys. Res. (A). 1997. V. 387. N 1–2. P. 225–230.

- [4] McIntere R.J. // J. IEEE Trans. Electron. Devices. 1966. V. ED-13, N 1. P. 164– 168.
- [5] *Tager A.C., Вальд-Перлов В.М.* Лавинно-пролетные диоды и их применение в технике СВЧ. М.: Сов. радио, 1968. 480 с.
- [6] Stillman G.E., Wolf C.M. Semiconductors and Semimetals / Ed. R.K. Willardson, A.C. Beer. N.Y. –San-Franc.–L.: Acad. Pr. 1977. V. 12. P. 291–393.
- [7] Техника оптической связи. Фотоприемниики / Под ред. У. Тсанга. М.: Мир, 1988. 528 с.
- [8] Sze S.M., Gibbons G. // Appl. Phys. Lett. 1966. V. 8. N 5. P. 111-113.
- [9] Грехов И.В., Сережкин Ю.Н. Лавинный пробой *p*-*n*-перехода в полупроводниках. Л.: Энергия, 1980. 152 с.
- [10] Зи С.М. Физика полупроводниковых приборов. М.: Мир, 1984. Кн. 1. 455 с.
- [11] Кузьмин В.А., Крюков Н.Н., Кюрегян А.С., Мнацеканов Т.П. // ФТП. 1975. Т. 9. В. 4. С 735–738.
- [12] Nicollian E.H., Brews J.R. MOS Physics and Technology. N.Y.: Willey, 1982. 908 p.
- [13] Осипов В.В., Панкратов А.А., Холоднов В.А. // Письма в ЖТФ. 1988. Т. 14.
 В. 20. С. 1889–1895; ФТП. 1989. Т. 23. В. 7. С. 1148–1155;
- [14] Холоднов В.А. // Письма в ЖТФ. 1988. Т. 14. В. 6. С. 551–556.
- [15] Арцис Н.Х., Холоднов В.А. // РиЭ. 1984. Т. 29. № 1. С. 151–159.
- [16] Read W.T. // Bell System Tech. 1958. V. 37. N 2. P. 401–446.
- [17] Miller S.L. // Phys. Rev. 1955. V. 99. N 4. P. 1234-1241.
- [18] Холоднов В.А. // Письма в ЖТФ. 1988. Т. 14. В. 15. С. 1349-1355.
- [19] Холоднов В.А. // ФТП. 1996. Т. 30. В. 6. С. 1051-1063.
- [20] Leguerre R., Urgell J. // Solid. St. Electron. 1976. V. 19. N 10. P. 875-881.
- [21] Шотов А.П. // ЖТФ. 1958. Т. 28. В. 3. С. 437-446.
- [22] Bogdanov S.V., Kravchenko A.B., Plotnicov A.F., Shubin V.E. // Phys. St. Sol. (a). 1986. V. 93. N 1. P. 361–368.
- [23] Stillman G.E., Cook L.W., Tabatanaie N., Bulman G.E., Robbins V.M. // IEEE Trans. on Electron Devices. 1983. V. ED-30. N 4. P. 364–381.
- [24] Baertsch R.D. // J. Appl. Phys. 1967. V. 38. N 11. P. 4267-4274.
- [25] Гаврюшко В.В., Косогов О.В., Лебедев В.Д. // ФТП. 1978. Т. 12. В. 12. С. 2351–2354.
- [26] Букингем М. Шумы в электронных приборах и системах. М.: Мир, 1986. 400 с.
- [27] Садыгов З.Я. Физические процессы в лавинных фотоприемниках на основе структуры кремний-широкозонный слой. (Дисс. на соискание учен. степ. д.ф.-м.н.). М.: МИФИ, 1997. 136 с.
- [28] Холоднов В.А. // Оптический журнал. 1996. В. 6. С. 53-55.
- [29] Холоднов В.А., Курочкин Н.Е. // Письма в ЖТФ. 1998. Т. 24. В. 17. С. 9–15.