01;03 Течение в турбулентном сверхзвуковом пограничном слое с тепловым источником

© О.Б. Ларин, В.А. Левин

Институт механики МГУ, Москва

Поступило в Редакцию 28 октября 1998 г.

Проведено численное исследование турбулентного сверхзвукового пограничного слоя с тепловым источником для широкого диапазона количества подводимого к газу тепла. Показана возможность значительного снижения сопротивления трения. Оценена эффективность использования теплопровода для такого снижения.

Рассматривается обтекание плоским сверхзвуковым потоком охлаждаемой пластины при наличии внешнего теплоподвода в прямоугольной области. Система осредненных уравнений турбулентного движения совершенного газа при отсутствии внешних массовых сил в приближении пограничного слоя имеет вид

$$\frac{\partial \rho u}{\partial x} + \frac{\partial \rho v_*}{\partial y} = 0, \tag{1}$$

$$\rho u \frac{\partial u}{\partial x} + \rho v_* \frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\mu_* \frac{\partial u}{\partial y} \right), \tag{2}$$

$$\rho u \frac{\partial I_0}{\partial x} + \rho v_* \frac{\partial I_0}{\partial y} = \frac{\partial}{\partial y} \left(\lambda_* \frac{\partial T}{\partial y} + \mu_* u \frac{\partial u}{\partial y} \right) + \rho Q, \tag{3}$$

$$\rho = \frac{pm}{RT}, \quad \rho v_* = \rho v + \langle \rho' v' \rangle, \quad I_0 = I + \frac{u^2}{2},$$
$$\mu_* = \mu + \mu_t, \quad \lambda = \left(\frac{\mu}{\Pr} + \frac{\mu_t}{\Pr_t}\right) c_p.$$

Здесь u, v — проекции вектора скорости на оси ортогональных координат x (вдоль поверхности) и y (по нормали к ней) соответственно; ρ — плотность; p — давление; T — температура; I — энтальпия; Q — удельное количество тепла, подведенное в единицу времени к данной

38

точке среды извне (известная функция координат); m — молекулярный вес газа; R — универсальная газовая постоянная; $\langle \rho', v' \rangle$ — корреляция пульсаций плотности и нормальной составляющей скорости; μ и μ_t — динамические коэффициенты молекулярной и турбулентной вязкости; c_p — удельная теплоемкость газа при постоянном давлении; Pr и Pr_t — число Прандтля и его турбулентный аналог. Предполагается, что три последних параметра постоянны.

Коэффициент турбулентной вязкости определяется при помощи распространенной двухслойной модели [1].

Граничные условия на поверхности обтекаемого тела (y = 0) имеют вид u = 0, v = 0, $T = T_w$. Характеристики потока на внешней границе слоя, отмеченные ниже индексом *e*, считаются известными.

Задача решается численно методом конечных разностей. Предварительно система (1)–(3) преобразуется к безразмерному виду. При этом используется нормальная координата $\eta = \delta^{-1}(x) \int_{0}^{y} \rho dy$, где $\delta(x)$ некоторая нормирующая функция. Используется неявная безусловно устойчивая разностная схема, которая обеспечивает аппроксимацию второго порядка относительно шагов сетки Δx и $\Delta \eta$ и обладает хорошими стабилизирующими свойствами.

Ниже представлены некоторые результаты расчетов при числе Маха в набегающем потоке $M_e = 3$. Считается, что температура охлаждаемой стенки совпадает с температурой газа на внешней границе $T_w = T_e$. Числа Прандтля и отношение удельных теплоемкостей таковы: $\Pr = 0.72$, $\Pr_t = 0.9$, $\gamma = 1.4$. Для коэффициента молекулярной вязкости μ принимается степенная температурная зависимость с показателем степени $\omega = 0.76$.

Предполагается, что внешний теплоподвод с постоянным параметром $q = Q(c_p T_e u_e)^{-1}L$ реализуется в прямоугольной области

$$0.2 < x/L \leqslant 0.6, \quad 5 \leqslant y/Y \leqslant 25. \tag{4}$$

Здесь $Y = \mu_e \rho_e^{-1} u_e^{-1} 10^4$, $L = Y \cdot 10^4$. Отметим, что область (4) полностью находится внутри пограничного слоя.

На рис. 1 приведены распределения местного коэффициента поверхностного трения $c_f = 2\tau_w \rho_e^{-1} u_e^{-2}$, где $\tau_w = (\mu \partial u / \partial y)_{y=0}$ — напряжение трения. Кривые *1*–8 соответствуют значениям параметра удельного теплоподвода q = 0, 1, 2, 4, 8, 16, 32, 64 (положительные значения

Рис. 1. Изменение местного коэффициента поверхностного трения по длине пластины. Удельный теплоподвод q: 1 - 0, 2 - 1, 3 - 2, 4 - 4, 5 - 8, 6 - 16, 7 - 32, 8 - 64.

параметра образуют геометрическую прогрессию). Видно, что внешний теплоподвод вызывает сильное снижение местного трения. Например, при q = 64 в конце зоны тепловыделения местный коэффициент поверхностного трения в 5.6 раза меньше, чем в случае q = 0.

Вниз по потоку от теплового источника довольно медленно восстанавливаются значения параметра c_f , соответствующие случаю отсутствия теплоподвода. Тепловые источники с параметрами q = 16 и q = 64 обеспечивают снижение сопротивление трения $F(x_2)$ на 40 и 60% соответственно ($F(x) = \int_{x_1}^x \tau_{wdx}, x_1 = 0.2L, x_2 = 0.6L$), что

Рис. 2. Изменение параметра эффективности по длине пластины. Удельный теплоподвод *q*: 2 — 1, 3 — 2, 4 — 4, 5 — 8, 6 — 16, 7 — 32, 8 — 64.

намного превосходит снижение, рассчитанное в [2] для сверхзвукового пограничного слоя на теплоизолированной поверхности.

С ростом удельного теплоподвода q приток тепла от газа к стенке заметно усиливается. Так, при q = 16 и q = 64 максимальные значения тепловых потоков в 1.5 и 1.9 раза превосходят величину, соответствующую случаю отсутствия теплового воздействия.

Для оценки эффективности применения теплового источника в целях снижения сопротивления трения используем параметр

$$H = \frac{\Delta F u_e}{Q_*}$$

где $\Delta F = (F)_q - (F)_0$, $Q_*(x)$ — количество внешнего тепла, подведенное к газу в единицу времени выше по течению от сечения *x*.

Распределения H(x) показаны на рис. 2 (нумерация кривых аналогична рис. 1). Для небольших значений параметра q эффективность теплоподвода слабо зависит от полного количества подведенного к потоку тепла. При значительном увеличении удельного теплоподвода q эффективность теплоподвода несколько снижается.

Список литературы

- [1] Cebeci T., Smith A.M.O. Analysis of turbulent boundary layers. New York– London: Acad. Press, 1974. 404 p.
- [2] Казаков А.В., Коган М.Н., Курячий А.П. // Изв. РАН. МЖГ. 1997. № 1. С. 48–56.