01;03 Об определении времени релаксации газожидкостной смеси

© В.Г. Ковалев, М.Б. Ригина, В.Н. Цуркин

Институт импульсных процессов и технологий НАН Украины, Николаев

Поступило в Редакцию 30 сентября 1998 г.

Выполнена оценка времени релаксации газожидкостной смеси. При этом интегрируется новое широкодиапазонное уравнение динамики межфазной границы типа Рэлея в поле ступенчатой волны давления для различных значений начального радиуса пузырька и амплитуд волновой нагрузки.

Показано, что для описания электровзрывных процессов в реальных газожид-костных смесях может быть использована модель равновесной среды.

Динамические процессы, происходящие в двухкомпонентных газожидкостных смесях, могут быть описаны в рамках равновесной модели при условии, что характерное время этих процессов значительно превышает время релаксации компонент смеси. Для нестационарных сигналов с крутым передним фронтом речь идет об интервале между мгновенным изменением давления и установлением соответствующего равновесного значения плотности, что для пузырьковых жидкостей полностью определяется пульсациями пузырьков газа.

Рассмотрим процесс установления нового равновесного радиуса одиночного пузырька в жидкости при нагружении волной ступенчатого профиля, который условно разделим на две стадии. На первой происходит адиабатическое сжатие пузырька, возникают колебания затухающего характера, наконец, устанавливается равновесный адиабатический радиус и соответствующая плотность. При этом достигается лишь механическое равновесие, температура газа в пузырьке еще выше температуры окружающей среды; термодинамическое же равновесие устанавливается на второй стадии, когда радиус уменьшается до изотермического значения с очень малой скоростью, поэтому учет акустических или вязкостных эффектов не нужен.

Для корректного подхода к описанию первой стадии процесса оценим основные характеристики второй стадии: характерное время установле-

21

ния теплового равновесия τ определим методами теории подобия [1], записав уравнение теплопроводности для случая сферической симметрии в виде

$$\frac{\langle T \rangle}{\langle R^2 \rangle} + \frac{2 \langle T \rangle}{\langle R^2 \rangle} = \frac{\langle T \rangle}{a^2 \tau},$$
 или $\tau = \frac{\langle R^2 \rangle}{3a^2},$ (1)

где а --коэффициент температуропроводности.

Равновесный адиабатический радиус пузырька R_a , характерный для второй стадии, связан с начальным радиусом R_0 и приложенным избыточным давлением δP соотношением

$$R_a = R_0 \left(\frac{P_0}{P_0 + \delta P}\right)^{\frac{1}{3\gamma}},\tag{2}$$

где P_0 — гидростатическое давление; γ — показатель адиабаты, а конечный изотермический радиус R_i — соотношением

$$R_i = R_0 \left(\frac{P_0}{P_0 + \delta P}\right)^{1/3}.$$
(3)

Выражения (1)–(3) позволяют определить характерное время второй стадии $\tau = (R_0/3a^2)[P_0/(P_0 + \delta P)]^{2/(3\gamma)}$, относительное изменение радиуса пузырька $\delta R = (R_a - R_i)/R_i$ и среднюю скорость движения его стенки $v = \delta R \cdot R_i/\tau$, результаты расчета которых при различных значениях радиуса пузырьков R_0 и избыточного давления δP приведены в табл. 1.

Величина δR , зависящая только от давления, при больших значениях последнего достаточно велика, и потому учет процесса сжатия при исследовании, например, расширения полости в жидкости с естественной газонасыщенностью может оказаться необходимым. Скорости сжатия в большинстве случаев невелики, но для малых пузырьков и больших давлений пренебрегать динамическими эфектами, по-видимому, нельзя. Кроме того, если характерное время второй стадии окажется сравнимым с временем релаксации среды, то разделение процесса на две стадии окажется невозможным; сжатие и теплообмен будут протекать одновременно. Однако это не усложняет математической модели пульсаций, так как процесс может быть описан аналогичными уравнениями политропического сжатия пузырька с показателем политропы, лежащим в интервале между адиабатическим и изотермическим значениями (определение его становится отдельной задачей).

Определяемые	$R_0, \mu \mathrm{m}$	$\delta P \cdot 10^{-5}$, Pa			
параметры		1	10	50	100
$ au, \mu \mathrm{s}$	50	30	13	6.4	4.6
v, m/s		0.09	0.43	0.96	0.13
$ au, \mu \mathrm{s}$	10	1.2	0.5	0.26	0.2
v, m/s		0.45	2.2	4.8	6.2
$ au, \mu ext{s}$	5	0.3	0.13	0.06	0.05
$ ext{v, m/s}$		0.9	4.3	9.6	13
$ au, \mu ext{s}$	1	0.01	0.005	0.003	0.002
$ av, ext{m/s}$		4.5	22	48	64
δR	Любой	0.07	0.26	0.45	0.55

Таблица 1.

Рассмотрим теперь первую стадию — адиабатические или политропические пульсации. Полученное в [2] в линейном приближении выражение для декремента затухания

$$\beta_{\pi} = \left(\frac{4\eta}{\rho_0 R_0^2} + \frac{3\gamma P_{0g}}{\rho_0 c_0 R_0}\right) \Big/ \left[2\left(1 + \frac{4\eta}{\rho_0 c_0 R_0}\right)\right],\tag{4}$$

где η — коэффициент динамической вязкости, ρ_0 — плотность жидкости, c_0 — невозмущенная скорость звука в жидкости; P_{0g} — давление газа в пузырьке, можно упростить и в дальнейшем использовать для анализа нелинейного процесса:

$$\beta_{\pi} = \frac{2\eta}{\rho_0 R_0^2} + \frac{3\gamma P_{0g}}{2\rho_0 c_0 R_0},\tag{5}$$

так как даже при минимальном $R_0 = 1\,\mu{
m m}$ для воды $4\eta/(
ho_0 c_0 R_0) = 0.003.$

Первый член в (5) определяет вклад в величину затухания вязкостных эффектов, второй — радиационных эффектов (излучения волн в жидкость). Рассматривая их отношение, уже при сравнительно небольших давлениях, например, при $P_{0g} = 0.14$ МРа для $R_0 = 10 \,\mu$ m выясняется, что вклад эффектов излучения становится определяющим.

Это, прежде всего, означает, что нелинейное уравнение Рэлея, где радиационные эффекты отсутствуют по определению, в интересующем нас диапазоне P_{0g} и R_0 не пригодно для оценки времени релаксации среды.

Далее рассмотрим нелинейное затухание на основе уравнения пульсаций в поле переменного давления [3,4]

$$R\ddot{R}\left(1+\frac{P_{1}}{\rho_{0}c_{1}^{2}}-\frac{\dot{R}}{c_{1}}+\frac{\dot{R}^{2}}{2c_{1}^{2}}\right)+\frac{3}{2}\dot{R}^{3}\left(1-\frac{\dot{R}}{3c_{1}}\right)$$
$$=\frac{P_{1}}{\rho_{0}}\left(1+\frac{\dot{R}_{1}}{c_{1}}\right)+\frac{R\dot{P}_{1}}{\rho_{0}c_{1}},$$
$$P_{1}=P_{0}\left(\frac{R_{0}}{R}\right)^{3\gamma}-P_{0}-P, \quad c_{1}=c_{0}+\dot{R}.$$
(6)

Анализ графических зависимостей, полученных в результате численного решения уравнения (6) в случае нагружения ступенчатой волной давления, позволил выделить два типа пульсаций [5]. Первый — пульсации, близкие к линейным, характерен для пузырьков сравнительно большого начального радиуса при малых избыточных давлениях (из рассмотренных режимов — при $R_0 = 10 \,\mu$ m и $R_0 = 50 \,\mu$ m и $\delta P \leq 3$ MPa. Второй тип пульсаций, реализующийся при больших давлениях, а для пузырьков размером менее $10 \,\mu$ m и при относительно небольших, характерен существенно нелинейной пульсацией, сопровождающейся большой потерей энергии, и последующими достаточно длительными малыми линейными колебаниями около положения равновесия (время их затухания можно не учитывать при определении времени релаксации плотности).

Введем понятие декремента затухания і-той пульсации

$$\beta_i = \frac{1}{t_{i+1} - t_i} \ln\left(\frac{R_i - R_a}{R_{i+1} - R_a}\right) \tag{7}$$

и сравним его значение с линейным затуханием β_{π} , согласно (5), для двух характерных режимов пульсаций, результаты расчетов приведены в табл. 2.

Как видно, в случае релаксации среды по второму типу можно действительно принять, что новое равновесное значение плотности

i	R_i/R_{i-1}	$t_i \mu \mathbf{s}$	$eta_i, \mu \mathrm{s}^{-1}$	$eta_{\pi}, \mu \mathrm{s}^{-1}$
1	0.27	1.58	0.037	
2	0.30	4.5	0.032	
3	0.33	7.3	0.032	0.0317
4	0.35	10.1	0.0318	
1	0.420	0.43	1.41	
2	0.493	0.94	0.41	
3	0.506	1.45	0.40	0.396
4	0.508	1.96	0.40	
	<i>i</i> 1 2 3 4 1 2 3 4	$\begin{array}{c cccc} i & R_i/R_{i-1} \\ \hline 1 & 0.27 \\ 2 & 0.30 \\ 3 & 0.33 \\ 4 & 0.35 \\ 1 & 0.420 \\ 2 & 0.493 \\ 3 & 0.506 \\ 4 & 0.508 \end{array}$	$\begin{array}{c cccc} i & R_i/R_{i-1} & t_i\mu\mathrm{s} \\ \hline 1 & 0.27 & 1.58 \\ 2 & 0.30 & 4.5 \\ 3 & 0.33 & 7.3 \\ 4 & 0.35 & 10.1 \\ 1 & 0.420 & 0.43 \\ 2 & 0.493 & 0.94 \\ 3 & 0.506 & 1.45 \\ 4 & 0.508 & 1.96 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Таблица 2.

устанавливается уже после первой пульсации пузырька. Поскольку же величина затухания первой, существенно нелинейной пульсации в несколько раз превышает линейное значение (5), то величина $t_{\beta} = 1/\beta_{\pi}$ характеризует время релаксации пузырьковой среды с достаточным запасом.

Учитывая, что для пузырьков малого размера основной вклад в затухание вносят радиационные эффекты [2], можно записать условие корректности равновесного приближения в виде

$$P > \frac{2\rho_0 c_0 R_0}{3\gamma t_\beta}.$$
(8)

Если потребовать, чтобы время релаксации среды было менее 1 μ s, то для пузырьков радиусом 15 μ m из (8) получим условие P > 10 MPa, что позволяет, например, использовать модель равновесной среды при описании гидродинамики электровзрыва в пузырьковой газожидкостной среде с естественным газонасыщением, когда $R_0 \leq 15 \,\mu$ m [6,7].

Список литературы

- [1] Седов Л.И. Методы подобия и размерности в механике. М: Наука, 1977. 438 с.
- [2] Губайдуллин А.А., Ивандаев А.И., Нигматулин Р.И. и др. // Итоги науки и техники. ВИНИТИ. МЖГ. 1982. Т. 17. С. 160–249.
- [3] Ковалев В.Г. // Акустический журнал. 1994. Т. 40. № 4. С. 606-608.

- [4] Бескаравайный Н.М., Ковалев В.Г., Кривицкий Е.В. // ЖТФ. 1994. Т. 64. В. 2. С. 197–200.
- [5] Ковалев В.Г., Ригина М.Б., Цуркин В.Н. // Ипульсные процессы в механике сплошных сред: Тех. докл. II науч. шк. Николаев, 1996. С. 37.
- [6] Ковалев В.Г., Ригина М.Б., Цуркин В.Н. // Тез. докл. науч.-техн. конф. "Электрический разряд в жидкости и его применение в промышленности". Николаев, 1992. С. 78.
- [7] Бескаравайный Н.М., Ковалев В.Г., Ригина М.Б. // Инженерно-физический журнал. 1994. Т. 67. № 1–2. С. 54–58.