Реверсивная диэлектрическая проницаемость фоточувствительного релаксорного сегнетоэлектрика

© В.В. Гладкий, В.А. Кириков, Е.С. Иванова, Т.Р. Волк

Институт кристаллографии им. А.В. Шубникова Российской академии наук, 119333 Москва, Россия

E-mail: glad@ns.crys.ras.ru

(Поступила в Редакцию 21 марта 2006 г.)

Исследована реверсивная диэлектрическая проницаемость фоточувствительного релаксорного сегнетоэлектрика ниобата бария-стронция, легированного La и Ce, без освещения и при освещении мощностью 0.22 mW/cm^2 . Измерения проницаемости проведены при одновременном воздействии на кристалл слабого переменного электрического поля частотой 1 MHz и медленно меняющегося периодического поля E_b с амплитудой в пределах $\pm 2.3 \text{ kV/cm}$. Показано, что освещение существенно увеличивает проницаемость, изменяет вид ее зависимости от величины поля E_b ликвидирует возможную униполярность кристалла, при этом значительно улучшается воспроизводимость значений проницаемости при повторных измерениях.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 05-02-17565 и частично проект № 06-02-16644).

PACS: 77.84.Dy, 77.22.Ch

1. Введение

Диэлектрическая проницаемость ниобата бария-стронция (SBN), как хорошо известно для всех релаксорных сегнетоэлектриков (релаксоров), в отличие от однородных кристаллов с четким структурным переходом в полярную фазу имеет пологий, размытый в широкой области температур максимум и обладает отчетливой частотной дисперсией в радиодиапазоне вблизи этого максимума [1,2]. Диэлектрические свойства релаксоров обнаруживают ярко выраженные аномалии также в сильных электрических полях: неповторяющиеся траектории поляризации нескольких первых циклов петель диэлектрического гистерезиса [3,4], отсутствие однозначного коэрцитивного поля и гигантские времена релаксации [5]. Наиболее вероятной причиной всех диэлектрических аномалий релаксоров, которые могут служить признаком и мерой их структурного беспорядка, являются внутренние смещающие электрические поля E_i , случайно распределенные по величине и направлению в объеме материала [6,7]. Подтверждением этого являются данные об уменьшении специфических диэлектрических аномалий в релаксорах с более высокой электрической проводимостью [7], а также в фоточувствительных релаксорах с фотопроводимостью [8,9], поскольку проводимость должна способствовать экранировке внутренних полей Е_i, а следовательно, и симметризации асимметричных локальных двуминимумных свободных энергий как функции поляризации [6].

Диэлектрическая проницаемость ε фоточувствительного релаксора в слабых полях существенно возрастает при освещении в полосе его поглощения (фотодиэлектрический эффект), и этот рост ε увеличивается при температурах, близких к температуре максимума ε [10]. Реверсивная диэлектрическая проницаемость, измеряе-

мая также при одновременном приложении сильного электрического поля, может дать представление о проницаемости релаксора для различных состояний его поляризации, соответствующих различным амплитудам сильных полей. Поэтому целью настоящей работы является выяснение поведения реверсивной проницаемости фоточувствительного релаксора при его освещении в интервале оптических частот полосы поглощения.

2. Кристалл и методика измерения

Кристалл Sr_{0.61}Ba_{0.39}Nb₂O₆ с концентрацией примесей 0.44 at.% La и 0.023 at.% Се (SBN-0.61(La + Ce))был выращен по модифицированной методике Степанова в НЦЛМиТ ИОФ РАН [11]. Приготовленный образец представлял собой полированную пластину размером $3 \times 2 \times 0.9$ mm. На грани, перпендикулярные самому короткому полярному направлению Z, пастой наносились серебряные электроды, к которым от измерительного входа стандартного цифрового моста Е7-12 подводились тонкие медные контакты. Образец помещался в криостат, позволяющий стабилизировать температуру в интервале от -50 до $+60^{\circ}$ С с точностью 0.05° С. Внутри криостата размещался светодиод, который при его подключении к стандартному источнику тока Б5-50 обеспечивал световой поток на образце с максимальной интенсивностью 0.22 mW/cm² в видимой области спектра 400-500 nm, т.е. в широкой полосе поглощения исследуемого кристалла, обусловленной фотоактивной примесью Се [9]. Измерение проницаемости є проводилось на частоте 1 MHz при напряжении 2.5 V/cm. Одновременно к кристаллу можно было подвести постоянное напряжение E_b в интервале от 0 до ± 2.3 kV/cm. Стабилизируемая температура, при которой измерялись все зависимости реверсивной є от смещающего постоянного поля E_b для неосвещенного и освещенного образца, выбрана равной 41.8°С, поскольку при ней ранее наблюдались достаточно большие значения диэлектрической проницаемости ε и фотодиэлектрического эффекта [10]. Перед каждым измерением образец предварительно нагревался до 60°С.

3. Результаты и обсуждение

Приводятся (рис. 1) два часто встречающихся варианта поведения диэлектрической проницаемости ε в медленно меняющемся сильном периодическом поле E_b (реверсивная проницаемость): изменение ε в поле E_b в кристалле с начальной нулевой суммарной поляризацией (неполярное состояние образца) и изменение ε в кристалле с начальной ненулевой поляризацией (униполярное состояние образца).

На рис. 1, *а* представлена зависимость ε от поля E_b для неполярного образца. Тонкими сплошными линиями показано изменение ε как функции поля E_b для образца, который оставался без освещения, жирными сплошными линиями — для освещаемого образца, штриховыми линиями — для образца после выключения освещения. Числа около кривых указывают последовательность изменения величины поля и є. Без освещения образца траектории изменения ε расположены между точками 1-6. В точке 6 включается освещение, и є изменяется по траекториям между точками 7-12. В точке 12 освещение выключается и дальнейшее изменение є в периодическом поле E_b следует по кривым между точками 13–18. При включении и выключении освещения є медленно релаксирует со временем к новому значению от точки 6 к 7 и от точки 12 к 13 соответственно так, как показано на вставке к рис. 1, *а*. Полный период изменения поля *E*_b при всех измерениях составлял 16 min. Основное различие кривых зависимости ε от поля E_b для классических однородных сегнетоэлектриков с прямоугольной петлей диэлектрического гистерезиса [1] и для релаксоров наличие максимумов ε на зависимостях $\varepsilon(E_b)$ для первых и монотонное уменьшение є от максимального значения для вторых. Причина этого очевидна: при переполяризации в момент $E_b = 0$ однородный сегнетоэлектрик проходит через монодоменное состояние, а релаксор ввиду отсутствия однозначного коэрцитивного поля [5] — через полидоменное, имеющее максимальные плотность доменных стенок и пропорциональную этой плотности проницаемость ε . При увеличении E_b плотность стенок и є, конечно, уменьшаются.

Специфическими особенностями реверсивной проницаемости ε для фоточувствительных релаксоров являются также следующие.

1) В отсутствие освещения траектории реверсивной проницаемости ε для нескольких первых циклов поля E_b между точками 1-6 не совпадают, поскольку для первых циклов не совпадают и траектории поляризации петель диэлектрического гистерезиса в сильных электрических

полях [3,4]. Наиболее вероятной причиной этой особенности переполяризации релаксора являются, как было отмечено ранее [3,4,7], случайные внутренние электрические поля его неоднородной структуры.

2) При включении освещения значение ε довольно резко возрастает от точки 6 до 7 за время порядка нескольких минут (фотодиэлектрический эффект), а при переполяризации в поле E_b амплитуда изменения ε существенно уменьшается и траектории изменения ε практически не различаются при повторных периодических изменениях поля E_b (точки 7–12 на кривых $\varepsilon(E_b)$). Другими словами, воспроизводимость значений ε при переполяризации кристалла в значительной степени улучшается. Аналогичный эффект наблюдается также при исследовании петель диэлектрического гистерезиса в сильных полях [12]. Максимальное увеличение ε под воздействием света имеет место при максимальном смещающем поле $E_b = \pm 2.3$ kV/cm.

3) При выключении освещения проницаемость ε уменьшается от точки 12 к 13 и далее при переполяризации в поле E_b следует по траектории от точки 13 до 18, которые не совпадают для первых циклов поля, так же как и до включения освещения, т.е. фактически повторяют кривые, которые наблюдаются до первого включения.

Второй вариант поведения реверсивной проницаемости є встречается в практике ее исследования в том случае, если образец кристалла к началу измерения оказывался в частично поляризованном состоянии (униполярное состояние образца). На рис. 1, *b* представлен такой случай. Без освещения кристалла зависимость проницаемости ε от поля E_b изменяется по траекториям от точки 1 до 6 (тонкие сплошные линии). Видно, что благодаря начальной униполярности образца максимум зависимости $\varepsilon(E_b)$, который для неполярного образца находился при $E_b = 0$ (рис. 1, *a*), смещен в точку 2, где $E_b = +2.3 \,\text{kV/cm}$ и плотность доменных стенок, повидимому, также максимальна. При включении освещения в точке 6 при $E_b = 0$ проницаемость ε довольно быстро увеличивается так, как показано на вставке к рис. 1, b, до значения, соответствующего точке 7. При циклировании поля Е_b в случае освещенного образца значение є изменяется по траекториям от точки 7 до 11 (жирные сплошные линии). Выключение освещения переводит є из точки 11 в точку 12 (см. вставку к рис. 1, b), и при циклировании поля E_b далее ε изменяется по траекториям от точки 12 до точки 16 (штриховые линии). Выдержка кристалла в течение часа при $E_b = 0$ в точке 16 практически не изменяет величину ε (точка 17), а при дальнейшем циклировании поля E_b изменение значения ε идет по траекториям между точками 17-21. Заметим, что максимальные значения ε при $E_b = 0$ и значения ε на краях кривых $\varepsilon(E_b)$ при $E_b = \pm 2.3 \, \text{kV/cm}$ для образцов, соответствующих рис. 1, а и b, после отключения освещения практически одинаковы, т.е. данные измерений для образцов, которые были изначально в различных состояниях, в кон-

Рис. 1. Реверсивная диэлектрическая проницаемость ε неполярного (*a*) и униполярного (*b*) образцов кристалла SBN-0.61(La + Ce) в различных смещающих электрических полях E_b . Тонкие сплошные линии — кристалл без освещения, жирные сплошные линии — кристалл освещен, штриховые линии — после отключения света. Числа показывают последовательность изменения состояния кристалла. $T = 41.8^{\circ}$ С. На вставках — изменение ε со временем для $E_b = 0$ при включении (сплошная линия) и выключении света (штриховая линия).

це всех процедур хорошо воспроизводятся. Основным результатом измерения реверсивной диэлектрической проницаемости ε образца, который находился сначала в униполярном состоянии, является то, что в результате его освещения и переполяризации в переменном поле E_b униполярное состояние исчезает и образец становится неполярным. Возможно, что такая процедура обработки кристалла, ликвидирующая случайную нежелательную

в некоторых случаях униполярность, может быть использована для всех фоточувствительных релаксорных сегнетоэлектриков.

Отмеченные выше основные особенности поведения реверсивной диэлектрической проницаемости ε при освещении фоточувствительного релаксора наблюдаются также при исследовании поляризации P в сильных низкочастотных квазистатических электрических полях

Рис. 2. Петли диэлектрического гистерезиса кристалла SBN-0.61(La + Ce) без освещения (тонкие сплошные линии), при освещении (жирные сплошные линии) и после отключения света (штриховые линии).

 $\sim 10^{-5}\,{\rm Hz}.$ Поскольку на результаты измерения поляризации релаксора под влиянием освещения существенно влияет фотопроводимость, уменьшающая величину удельного электрического сопротивления до значения $\rho\approx 8\cdot 10^{10}\,\Omega\cdot{\rm cm},$ при расчете поляризации вносилась поправка на проводимость. Методика измерения поляризации, учитывающая поправки на электрическую проводимость, представлена в [12].

На рис. 2 показана петля диэлектрического гистерезиса $P(E_b)$ при той же температуре 41.8°C, при которой измерялась реверсивная проницаемость є, без и при воздействии освещения. Петля в отсутствие освещения показана тонкой сплошной линией, при освещении жирной сплошной линией, при повторном выключении освещения — штриховой линией. Числа около кривых указывают последовательность изменения поля и поляризации *P*. Видно, что производная dP/dE, пропорциональная реверсивной квазистатической проницаемости є, так же как и при измерении на частоте 1 MHz, возрастает при освещении кристалла во всем интервале изменения поля E_b . Уменьшение dP/dE с увеличением E_b больше у образца, не подвергнутого воздействию света. Конечно, эти специфические свойства фоточувствительного релаксора более выражены при измерении на частоте 1 MHz. Особенно это относится к влиянию света и переполяризации на униполярном кристалле.

Наиболее вероятной причиной влияния света на поляризацию и диэлектрическую проницаемость фоточувствительного релаксора является экранирование внутренних электрических полей фотоиндуцированными носителями заряда [7], и измерение реверсивной проницаемости релаксора может служить удобным методом для выявления этих особенностей свойств кристалла.

Список литературы

- Г.А. Смоленский, В.А. Боков, В.А. Исупов, Н.Н. Крайник, Р.Б. Пасынков, М.С. Шур. Сегнетоэлектрики и антисегнетоэлектрики. Наука, Л. (1971). 475 с.
- [2] М. Лайнс, А. Гласс. Сегнетоэлектрики и родственные им материалы. Мир, М. (1981). 736 с.
- [3] В.В. Гладкий, В.А. Кириков, С.В. Нехлюдов, Т.Р. Волк, Л.И. Ивлева. Письма в ЖЭТФ 71, 328 (2000).
- [4] T. Granzow, V. Doerfler, Th. Woike, M. Woehleke, R. Pankrath, M. Imlau, W. Kleemann. Phys. Rev. B 63, 174101 (2001).
- [5] В.В. Гладкий, В.А. Кириков, Т.Р. Волк, Д.В. Исаков, Е.С. Иванова. ФТТ 45, 2067 (2003).
- [6] L.E. Cross. Ferroelectrics 76, 241 (1987).
- [7] В.В. Гладкий, В.А. Кириков, Т.Р. Волк, Л.И. Ивлева. ЖЭТФ 120, 1 (2001).
- [8] T. Granzow, V. Doerfler, Th. Woike, M. Woehleke, R. Pankrath, M. Imlau, W. Kleemann. Europhys. Lett. 57, 597 (2002).
- [9] В.В. Гладкий, В.А. Кириков, Т.Р. Волк, Е.С. Иванова, Л.И. Ивлева. ФТТ 47, 286 (2005).
- [10] В.В. Гладкий, В.А. Кириков, Е.С. Иванова, Т.Р. Волк. ФТТ 48, 1817 (2006).
- [11] L.I. Ivleva, N.V. Bogodaev, N.M. Polozkov, V.V. Osiko. Opt. Mater. 4, 168 (1995).
- [12] V.V. Gladkii, V.A. Kirikov, T.R. Volk, E.S. Ivanova. Ferroelectrics 314, 115 (2005).