05;09 Набег фазы поверхностных магнитостатических волн, распространяющихся в неоднородно намагниченных ферритовых пленках и структурах феррит–металл

© В.И. Зубков, В.И. Щеглов

Институт радиотехники и электроники РАН, Фрязино

Поступило в Редакцию 10 июня 1998 г.

Показано, что при распространении поверхностных магнитостатических волн (ПМСВ) в структуре феррит-металл, намагниченной линейно неоднородным полем, набег фазы ПМСВ во много раз превышает набег фазы при распространении в ферритовой пленке, а также в структуре феррит-металл, намагниченной однородным полем, и может достигать огромных значений — десятков тысяч радиан. Это свидетельствует о перспективности разработки фазовращателей СВЧ на структурах феррит-металл, намагниченных неоднородными полями.

Поверхностные магнитостатические волны (ПМСВ), распространяющиеся в касательно намагниченных ферритовых пленках (ФП) и в пленочных структурах на их основе, используются для создания широкого класса устройств обработки информации в диапазоне СВЧ [1–4]. Применение неоднородных подмагничивающих полей позволяет, с одной стороны, уменьшить геометрические размеры известных устройств, а с другой — создать устройства на совершенно новых принципах [5–9]. К настоящему времени изучены траектории ПМСВ, а также изменения волнового числа и векторов фазовой и групповой скоростей волны в процессе распространения [7–9] в неоднородном подмагничивающем поле H_g , тогда как вопрос о набеге фаз этих волн остается открытым. Однако, для конструирования фазовращателей и ряда многофункциональных устройств СВЧ необходимо значение именно набега фаз. Ниже впервые рассчитан набег фаз для ПМСВ, распространяющихся в поле H_g .

Был исследован набег фаз при распространении ПМСВ в ФП и в ФП с металлизированной поверхностью. Последняя ФП называется далее

79

структурой феррит-металл (ФМ-структурой). Расчет проводился методами геометрической оптики [7–9]. ФП и ФМ-структура намагничены линейно неоднородным полем H_g . Система координат выбрана так, что плоскость y0z совпадает с плоскостью ФП, а ось 0x перпендикулярна ей. Подмагничивающее линейно неоднородное поле H_g прикладывалось в плоскости ФП вдоль оси 0z. Его направление не меняется, а напряженность зависит от координаты z по закону:

$$H_g = H_z(z) = 4\pi M_0(\Omega_H + za^{-1}), \tag{1}$$

где $4\pi M_0$ — намагниченность насыщения $\Phi\Pi$, $\Omega_H = H_0 (4\pi M_0)^{-1}$, H_0 — однородная часть поля H_g .

Предполагается, что ПМСВ с частотой $\omega_i = 2\pi f_i$ и волновым числом k_i возбуждается в начале координат, а вектор ее фазовой скорости составляет с осью 0у угол φ (в точке возбуждения $\varphi = \varphi_0$). Набег фазы Φ определяется как интеграл от произведения волнового числа на расстояние по траектории ПМСВ z(y):

$$\Phi = \int_{y_b}^{y_e} k(y, z(y)) \sqrt{1 + (dz/dy)^2} \, dy, \tag{2}$$

где y_b и $y_e - y$ -координаты начальной и конечной точек траектории. Траектории ПМСВ z(y) и зависимости волнового числа k(y) и углов наклона векторов фазовой $\varphi(y)$ и групповой $\psi(y)$ скоростей рассчитывались по методике, описанной в [7–9].

Напомним [8,9], что при угле $\varphi_0 > 0$ траектории ПМСВ представляют собой параболообразные кривые: ПМСВ сначала идет в сторону уменьшения поля H_g (уменьшения z), а затем поворачивает в сторону увеличения поля H_g (увеличения z). ПМСВ с заданными частотой $\Omega_i = \omega_i (4\pi\gamma M_0)^{-1}$ (γ — модуль гиромагнитного отношения для электрона) и углом φ_0 в поле H_g может распространяться только в интервале $\delta H = H_{gu} - H_{gi}$ изменения поля H_g . Границы интервала δH определяются из дисперсионного соотношения для ПМСВ в ФП и в ФМ-структуре при $\Omega_i = \text{const.}$

Верхняя граница $\Omega_{gu} = H_{gu} (4\pi M_0)^{-1}$ равна [8,9]:

$$\Omega_{gu} = 0.5 \Big(\sqrt{4\Omega_i^2 + 1} - 1 \Big). \tag{3}$$

Нижняя граница $\Omega_{gl} = H_{gl} (4\pi M_0)^{-1}$ равна: для ФП [8]

$$\Omega_{gl} = 0.5 \Big(\sqrt{4\Omega_i^2 + \exp(-2k_{y,i}d)} - 1 \Big), \tag{4}$$

для ФМ-структуры [9]

$$\Omega_{gl} = \frac{-(1+\varkappa_{+1}) + \sqrt{(2\varkappa_{+1}\Omega_i - 1)^2 + \varkappa_{+1}\varkappa_{-1}}}{2\varkappa_{+1}},$$
(5)

где $\varkappa_{-1} = \operatorname{cth} k_{y,i} d - 1$ и $\varkappa_{+1} = \operatorname{cth} k_{y,i} d + 1$, $k_{y,i}$ — проекция волнового вектора на ось 0у, d — толщина ФП.

При достижении поля Ω_{gl} и в ФП, и в ФМ-структурах происходит поворот направления распространения ПМСВ, а при достижении поля Ω_{gu} в ФП — зеркальное отражение ПМСВ [7–9]. Это и обусловливает параболообразный вид траекторий ПМСВ z(y) и зависимостей k(y).

Расчеты проводились для следующих параметров: $\Omega_H = 0.25$, $a = 8 \,\mathrm{cm}^{-1}$, $4\pi M_0 = 1750 \,\mathrm{Gs}$ (ФП из железоиттриевого граната), $d = 15 \,\mu\mathrm{m}$, угол $\varphi_0 = 30^\circ$. Полученные результаты представлены на рис. 1 и 2.

На рис. 1 представлена зависимость набега фаз Φ от расстояния у для ПМСВ различных частот в $\Phi\Pi$. Из рис. 1 видно, что наклон кривых набега фаз тем больше, чем выше частота ПМСВ f. Кривые набега фаз Φ для ПМСВ, распространяющейся в поле H_g , обрываются тогда, когда волна выходит из области допустимых значений поля H_g , определяемых по (3) и (4). Кривые для поля H_g мало отличаются от кривых для поля H_0 (разница $\approx 10\%$). На большей части траектории кривые набега фаз Φ для ПМСВ в поле H_g лежат ниже, чем для ПМСВ в поле H_0 . В нижней части частотного диапазона существования ПМСВ на конце траектории, когда волна приближается к верхней границе поля H_{gu} , кривая для ПМСВ в поле H_g пересекает кривую для ПМСВ в поле H_0 и далее идет незначительно выше нее.

На рис. 2 представлена зависимость набега фаз Φ от расстояния *у* для ПМСВ различных частот в Φ М-структурах. Траектории ПМСВ так же, как и в Φ П, представляют собой параболообразные кривые [9]. Однако, как следует из сравнения (4) с (5), область допустимых значений поля H_g для ПМСВ с заданной частотой значительно больше, и ее траектория удлиняется в 5–10 раз. Чем выше частота ПМСВ *f*, тем больше наклон кривых набега фаз Φ . В отличие от ПМСВ в Φ П, в Φ М-структурах

Рис. 1. Набег фазы ПМСВ различных частот в ФП. Сплошные кривые для ПМСВ в поле H_g , штриховые — в поле H_0 . Кривые: I - f = 2.9 GHz, 2 - f = 3.1 GHz, 3 - f = 3.3 GHz.

ПМСВ не достигает верхней границы поля Ω_{gu} , ее траектория в плоскости ФП асимптотически приближается к границе, соответствующей полю Ω_{gu} и параллельной оси 0у, и уходит в бесконечность не обрываясь, вектор групповой скорости асимптотически стремится к направлению оси 0у, вектор фазовой скорости — к оси 0z, а угол ϑ между ними — к 90°. При $\vartheta = 90^{\circ}$ ПМСВ перестает переносить энергию и ее рассмотрение теряет физический смысл. Поэтому в расчетах траектория z(y) ограничена значением z^* , при котором угол $\varphi = 89^{\circ}$. Кривые набега фаз Ф для ПМСВ в поле H_g на участках траектории, приближающихся к верхней границе поля Ω_{gu} , сильно отличаются от таковых в поле H_0 (рис. 2 и [4]). При этом кривые для ПМСВ в поле H_0 и ушли бы на бесконечность, если бы траектории не были ограничены значением z^* . Чем выше

Рис. 2. Набег фазы ПМСВ различных частот в ФМ-структуре. Сплошные кривые для ПМСВ в поле H_g , штриховые — в поле H_0 . Кривые: I - f = 2.8 GHz, 2 - f = 3.6 GHz, 3 - f = 4.4 GHz, 4 - f = 5.2 GHz.

частота ПМСВ, тем подъем кривых вверх проявляется сильнее. Набег фазы достигает десятков тысяч радиан и при одних и тех же значениях координаты y в сотни раз превышает набег фазы в однородном поле (сравни с [4,10]).

Итак, показано, что при распространении ПМСВ в ФМ-структуре, намагниченной линейно неоднородным полем, набег фазы ПМСВ во много раз превышает набег фазы в ФП, а также в ФМ-однородном поле и может достигать огромных значений — десятков тысяч радиан. Это свидетельствует о перспективности разработки фазовращателей СВЧ на ФМ-структурах, намагниченных неоднородными полями. Выбор вида неоднородного поля позволяет формировать любые типы зависимостей $\Phi(y)$, определяющие желаемую крутизну настройки фазовращателей.

Список литературы

- [1] Исхан В.С. // ТИИЭР. 1988. Т. 76. № 2. С. 86-104.
- [2] Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. // Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во СГУ, 1993. 312 с.
- [3] Вугальтер Г.А., Гилинский И.А. // Изв. вузов. Радиофизика. 1989. Т. 32. № 10. С. 1187–1220.
- [4] Бондарев А.С., Хитровский В.А. // Вестник Киевского политехнического ин-та. Радиоэлектроника. 1980. № 17. С. 26–28.
- [5] Morgenthaler F.R. // Microwave Journ. 1982. V. 25. № 2. P. 83–90.
- [6] Tsutsumi M., Masaoka Y., Ohira F., Kumagai N. // IEEE Trans. on MTT. 1981. V. 29. N 6. P. 583–587.
- [7] Vashkovsky A.V., Zubkov V.I., Lock E.H., Shcheglov V.I. // IEEE Trans. on Magn. 1990. V. 26. N 5. P. 1480–1482.
- [8] Вашковский А.В., Зубков В.И., Локк Э.Г., Щеглов В.И. // РЭ. 1991. Т. 36. № 1. С. 18–23.
- [9] Вашковский А.В., Зубков В.И., Локк Э.Г., Щеглов В.И. // ЖТФ. 1995. Т. 65. № 8. С. 78–89.
- [10] Hansson B.E.R., Aditya S., Larsson M.A. // IEEE Trans. on MTT. 1981. V. 29. N 3. P. 209–215.