05;11;12 Наблюдение выделений в сплаве железо-никель-титан с помощью сканирующей туннельной микроскопии

© В.Л. Арбузов, К.В. Шальнов, С.Е. Данилов, А.Э. Давлетшин, Н.Л. Печеркина, В.В. Сагарадзе

Институт физики металлов УрО РАН, Екатеринбург

Поступило в Редакцию 10 августа 1998 г.

Методами сканирующей туннельной микроскопии и электронной микроскопии исследовался процесс старения ГЦК-сплава Fe + 36.5%Ni + 2.5%Ti при отжиге. Исследована возможность изучения образующихся при старении выделений новой фазы с помощью сканирующей туннельной микроскопии. Определены размеры частиц γ' -фазы.

Исследование особенностей распада аустенитных нержавеющих сталей и сплавов является важной задачей, так как от формы и размеров появляющихся выделений новой фазы зависят многие макроскопические характеристики, например радиационная стойкость и прочность. Но классические методы исследования: рентгеновские и электронномикроскопические — не всегда позволяют надежно изучить процесс появления новой фазы, особенно на начальных стадиях. Поэтому использование сканирующей туннельной микроскопии (метода, исследующего структуру поверхности образцов с нанометровым разрешением) в изучении процессов старения является очень перспективным.

Для выявления возможностей и особенностей использования сканирующей туннельной микроскопии (СТМ) в исследованиях термических и радиационно-индуцированных структурно-фазовых превращений в металлах и сплавах необходимо было убедиться, что с помощью СТМ в принципе это возможно, так как в литературе нет примеров использования СТМ для этих целей. Обычно СТМ используется в исследованиях физики поверхности, наноструктур и нанотехнологии [1]. В нашем же случае необходимо было контролировать выделения новой фазы в объеме материала.

В качестве модельного сплава для этой цели был взят ГЦК-сплав Fe + Ni(36.5 mas.%) + Ti(2.5 mas.%). Данный сплав в закаленном состо-

24

25

Рис. 1. Типичные СТМ-изображения, полученные на поверхности сплава H36T2: a — после закалки в воду от 1100°C, b — после отжига при температуре 750°C в течение 10 h.

янии является пересыщенным твердым раствором, и при старении в нем должна выделяться упорядоченная γ' -фаза, близкая по составу к Ni₃Ti. Эта фаза мало отличается по параметру решетки от матрицы и когерентно связана с ней. Все это затрудняет выявление этой фазы на начальных стадиях старения рентгеновскими и электронно-микроскопическими методами. Но при достаточно больших временах старения, когда размеры выделений достигают 8–20 nm выделения γ' -фазы достаточно хорошо выявляются при электронно-микроскопических исследованиях [2].

Письма в ЖТФ, 1999, том 25, вып. 4

Рис. 2. Светлопольное (a) и темнопольное (b) электронно-микроскопические изображения γ' -фазы в состаренном сплаве H36T2. На вклейке к рис. 2, *а* представлена электронограмма сплава H36T2.

Образцы сплава H36T2 были отожжены в очищенном проточном гелии 30 min при 1100°С и закалены в воде со скоростью $\sim 500 \, \text{K/s}$ для получения пересыщенного твердого раствора с гомогенным распределением титана. Образцы полировали в реактиве, содержащем $H_2SO_4 + CrO_3$, для сглаживания рельефа и удаления возможных поверхностных окислов. После этого поверхность образцов изучалась на СТМ. Типичное изображение поверхности образцов после закалки представлено на рис. 1, *а*. Видно что, поверхность закаленного образца достаточно ровная, без каких-либо особенностей.

Письма в ЖТФ, 1999, том 25, вып. 4

Состаренный образец далее подвергали электротралению в том же реактиве, что и закаленный. Глубина травления была $\sim 1\,\mu{\rm m}.$ Можно предполагать, что скорости травления самих выделений новой фазы и матрицы будут различны, что создаст при травлении рельеф поверхности при наличии таких выделений в объеме.

На рис. 1, *b* представлено СТМ изображение поверхности состаренного образца после электротравления. На нем видны неровности сферической формы, средний размер которых $\sim 17-25$ nm. Учитывая, что на закаленном образце после травления неровностей такой формы не наблюдалось, можно предполагать, что обнаруженные сферические неровности на поверхности состаренного образца и есть выделения новой фазы. Меньший, по сравнению с полученным электронно-микроскопически, размер выделений объясняется следующим: во-первых, СТМ-исследование ведется на поверхности образца и видимая часть выделения может оказаться меньше находящейся в объеме, во-вторых, γ' -частицы могли уменьшить свой размер вследствие их подтравливания. Возможно также, что в этой части образца при СТМ-исследовании присутствовали частицы размером ниже среднего.

Таким образом, нам удалось показать, что:

в ГЦК-сплаве H36T2 наблюдается интерметаллидное старение с образованием выделений γ' -фазы, размеры которых достигают 35 nm;

СТМ-исследования могут быть использованы для исследований выделений новой фазы в объеме материала.

Работа выполнена при частичной поддержке МНТЦ (проект № 467–97) и Программы государственной поддержки ведущих научных школ РФ (проект № 96–15–96515).

Список литературы

[1] Эдельман В.С. // ПТЭ. 1991. № 1. С. 24-42.

[2] Алябьев В.М., Волгин В.Г., Дубинин С.Ф. // ФММ. 1990. № 8. С. 142–148.

Письма в ЖТФ, 1999, том 25, вып. 4