## 05.4;07;09

# Чувствительность поверхностного СВЧ импеданса сверхпроводящих тонких пленок к модулированному оптическому излучению

© В.М. Арутюнян, В.В. Буниатян

Ереванский государственный университет

#### Поступило в Редакцию 8 апреля 1998 г. В окончательной редакции 14 сентября 1998 г.

Теоретически проанализирована фоточувствительность составляющей СВЧ поверхностного импеданса ВТСП пленок при их облучении модулированным по интенсивности оптическим возбуждением. Полученные результаты находятся в согласии с экспериментальными данными.

Открытие высокотемпературных сверхпроводников (ВТСП) и развитие технологии их получения в виде тонких пленок позволяют реализовать чувствительные СВЧ устройства миллиметрового и субмиллиметрового диапазонов волн, работающие на азотном уровне температур (например, [1,2]). В последние годы заметный интерес проявляется к изучению свойств сверхпроводника при воздействии на него лучистой энергии (лазерного излучения, инфракрасного возбуждения, звука и т.д.). Дополнительное к тепловому разрушение куперовских пар под влиянием лазерным пучком в обычных сверхпроводящих тонких пленках исследовалось еще в начале 70-х годов (например, [3-7]), в результате чего был сделан вывод, что образование дополнительных неспаренных электронов в принципе уменьшает ширину энергетической щели в сверхпроводнике, но само сверхпроводящее состояние не разрушается вплоть до вполне определенных концентраций дополнительных электронов и соответственно энергий оптического возбуждения. Вышеуказанное явление взаимодействия фотонов с энергетической щелью в ВТСП пленках и неболометрического распада пары сверхпроводящих электронов может быть использовано для обнаружения слабых сигналов коротких волн, т.е. для создания высокочувствительных детекторов.

50

Реализованная на практике высокая чувствительность ВТСП пленок, изготовленных на YBCO, к оптическому возбуждению (см., например, [8,9–13]) открывает возможность реализации также оптических переключателей [14], смесителей [15], линий задержки [16], квазиоптических фильтров [17] и других оптически управляемых СВЧ приборов.

Целью настоящей работы является анализ зависимости фоточувствительности составляющей СВЧ–поверхностного импеданса ВТСП пленок при их облучении модулированным по интенсивности оптическим возбуждением.

#### Теоретический анализ

Ясно, что если на ВТСП пленку падает модулированный оптический сигнал  $\Phi = \Phi_0(1 + \sin \omega_S t)/2$ , где  $\Phi_0$  — интенсивность излучения  $(W/cm^2)$ ,  $\omega_S$  — частота модуляции сигнала, t — время, то активная и реактивная составляющие поверхностного импеданса пленки модулируются по закону "накачки". Примем, что в результате поглощения ВТСП пленкой оптического излучения с интенсивностью  $\Phi_0$  имеют место некоторые неболометрические перебросы (см., например, [4,7,9]) электронов через сверхпроводящую щель, при этом температура пленки существенно не меняется, а в рамках двухжидкостной модели общая концентрация электронов  $n = n_S + n_N = n_{S\Phi} + n_{N\Phi}$  и сверхпроводящее состояние сохраняются. Тогда концентрация электронов n<sub>5</sub>, связанных в сверхпроводящем состоянии в пары, уменьшается, а концентрация "нормальных", несвязанных электронов n<sub>N</sub> увеличивается на одну и ту же величину  $\Delta n_{\Phi}$ . Приняв вышеуказанное за основу, запишем соответствующие выражения для концентрации при наличии облучения, снабженные индексом "Ф", в виде

$$n_{S\Phi} = n_S - \Delta n_{\Phi}, \qquad n_{N\Phi} = n_N + \Delta n_{\Phi}. \tag{1}$$

Для концентрации неравновесных (дополнительных) квазичастиц, нормированных на величину  $[4N(0)\Delta_0]$ , где N(0) — плотность односпиновых состояний около уровня Ферми,  $\Delta_0$  — энергетическая щель при T = 0, в [4,7] получено выражение

$$\Delta n_{\Phi} = \eta p \tau_{\Im \Phi} \Big[ d\Delta(T, \Delta n_{\Phi}) \Big]^{-1}, \qquad (2)$$

где p — мощность света, падающего на единицу площади (W/cm<sup>2</sup>);  $\eta$  — безразмерный "эффективный квантовый выход", указывающий на то, какая часть поглощенной пленкой мощности расходуется непосредственно на создание дополнительных квазичастиц; d — толщина пленки.

Используя результаты работы [10], выражение для  $\Delta n_{\Phi}$  можно представить также через концентрацию поглощенных ВТСП пленкой фотонов  $N_{\Phi}$  (сm<sup>-3</sup> · фотон/s) как

$$\Delta n_{\Phi} \cong \eta \tau_{\mathfrak{H}} N_{\Phi},\tag{3}$$

где  $\tau_{\mathfrak{I}\mathfrak{P}}$  — эффективное время жизни квазичастиц. Из (2) и (3) следует, что  $\Delta n_{\Phi} \sim \Phi$  или  $\Delta n_{\Phi} \sim N_{\Phi}$ , и поэтому в первом приближении примем  $\Delta n_{\Phi} \cong C\Phi \cong C_1 N_{\Phi}$ . При этом  $C \cong \eta \tau_{\mathfrak{I}\mathfrak{P}} [d\Delta(T, \Delta n_{\Phi})]^{-1}$ ,  $C_1 \cong \eta \tau_{\mathfrak{I}\mathfrak{P}}$ . Выразив  $\Delta n_{\Phi}$  через  $n_N$  и  $n_S$ , имеем  $\Delta n_{\Phi} = n_N f_1 = n_S f_2$ , где

$$f_1 \cong C\Phi n_N^{-1} \cong C_1 N_{\Phi} n_N^{-1},$$
  

$$f_2 \cong C\Phi n_S^{-1} \cong C_1 N_{\Phi} n_S^{-1}.$$
 (3a)

Известно, что в ВТСП пленках при выполнении неравенства  $d \ll \lambda_L$ , где  $\lambda_L$  — лондоновская глубина проникновения, аналитические выражения для активной и реактивной составляющих поверхностного СВЧ импеданса, рассчитанные на базе двухжидкостной модели, при  $t_c = T/T_c < 1$  записываются в виде [2,8];

$$R_S(t_C) = (\omega\mu_0)^2 \lambda_L^4(t_C) \sigma_N(t_C)/d, \quad X_S(t_C) = \omega\mu_0 \lambda_L^2(t_C)/d, \quad (4)$$

где

$$\lambda_L^2(t_C) = m_S (n_S q^2 \mu_0)^{-1}, \qquad \sigma_N(t_C) = n_N q^2 \tau_N m_N^{-1}, \tag{5}$$

T — температура образца;  $T_C$  — критическая температура;  $\omega$  — частота СВЧ поля;  $\mu_0$  — магнитная постоянная вакуума;  $\sigma_N$  — проводимость;  $m_S$ ,  $m_N$ ,  $n_S$ ,  $n_N$  — эффективные массы и концентрации электронов в сверхпроводящем и нормальном (несверхпроводящем) состояниях соответственно;  $\tau_N$  — время жизни нормальных электронов; q — заряд электрона.

Используя (1)–(4), для составляющих импеданса  $R_{S\Phi}(t_C)$  и  $X_{S\Phi}(t_C)$  получим выражения

$$R_{S\Phi} \approx R_S(t_C) \{ 1 + 2f_2 + f_1 + 2f_1f_2 \}, \qquad X_{S\Phi} \approx X_S(t_C) \{ 1 + f_2 \}.$$
(6)

Введем понятие оптической чувствительности составляющих поверхностного импеданса  $S_{R\Phi}$  и  $S_{X\Phi}$ . Для них из (4) и (6) нетрудно получить выражения

$$S_{R\Phi} \cong \frac{1}{R_S(t_C)} \frac{\partial R_{S\Phi}(t_C)}{\partial \Phi} \cong \frac{c}{n_S} \left\{ 2 + \frac{n_S}{n_N} + \frac{4C\Phi}{n_N} \right\},$$
  
$$S_{X\Phi} \cong \frac{1}{X_S(t_C)} \frac{\partial X_{S\Phi}(t_C)}{\partial \Phi} \cong \frac{c}{n_S}.$$
 (7)

Из (7) следует, что скорость (темп) увеличения  $S_{R\Phi}$  с интенсивностью излучения (оптическая чувствительность по R) больше, чем  $S_{X\Phi}$  (чувствительность по X). Аналогично при обратном неравенстве  $d > \lambda_L$ , характерном для массивного ВТСП материала, когда справедливы выражения [2,18]

$$R_{SM}(t_C) = (\omega\mu_0)^2 \lambda_L^3(t_C) \sigma_N(t_C)/2, \quad X_{SM}(t_C) = \omega\mu_0 \lambda_L(t_C), \quad (8)$$

нами получены соотношения

$$R_{S\Phi} \approx R_S(t_C)(1+f_1+3f_1f_2/2), \quad X_{S\Phi} \approx X_S(t_C)(1+f_2/2), \quad (9)$$

а  $S^M_{R\Phi}$  и  $S^M_{X\Phi}$  равны

$$S_{R\Phi}^{M} \cong \frac{c}{n_{S}} \left\{ \frac{n_{S} + 3C\Phi}{n_{N}} \right\}, \qquad S_{X\Phi}^{M} \cong \frac{c}{2n_{S}}.$$
 (10)

Так как

$$\frac{n_S}{n_N} = \frac{1 - t_C^{3/2}}{t_C^{3/2}} = \frac{f_1}{f_2} = \frac{1}{\gamma(t_C)},$$
$$f_2 \cong \gamma(t_C) f_1, \qquad \gamma(t_C) = \frac{t_C^{3/2}}{1 - t_C^{3/2}},$$

то из (7) и (10) получим

$$S_{R\Phi} \cong \frac{c}{n_N} \left\{ 1 + 2\gamma(t_C) + \frac{4C\Phi\gamma(t_C)}{n_N} \right\}, \qquad S_{X\Phi} \cong \frac{c\gamma(t_C)}{n_N},$$
$$\frac{S_{R\Phi}}{S_{X\Phi}} \cong \frac{1 + 2\gamma(t_C)}{\gamma(t_C)}$$
(11)



Зависимость  $S_{R\Phi}$  и  $S_{X\Phi}$  ( $S_{R\Phi}^{M}$  и  $S_{X\Phi}^{M}$ ) от концентрации дополнительных квазичастиц  $n_1$  при различных температурах.

для тонкой пленки  $(d\ll\lambda_L)$  и

$$S_{R\Phi}^{M} \cong \frac{c\gamma(t_{C})}{n_{N}} \left\{ \frac{1}{\gamma(t_{C})} + \frac{3C\Phi}{n_{N}} \right\}, \quad S_{X\Phi}^{M} \cong \frac{S_{X\Phi}}{2}, \quad \frac{S_{R\Phi}^{M}}{S_{X\Phi}^{M}} \cong \frac{2}{\gamma}$$
(12)

для массивного материала.

| $n_1$ | <i>T</i> , K | <i>t</i> <sub>C</sub> | $\gamma(t_C)$ | $\Delta, \mathrm{eV}$ | $S_{R\Phi} \cdot 10^4$ | $S_{X\Phi} \cdot 10^4$ | $S^M_{R\Phi} \cdot 10^4$ | $S^M_{X\Phi} \cdot 10^4$ | $S_{R\Phi}/S_{X\Phi}$ | $S^M_{R\Phi}/S^M_{X\Phi}$ |
|-------|--------------|-----------------------|---------------|-----------------------|------------------------|------------------------|--------------------------|--------------------------|-----------------------|---------------------------|
| 0.02  | 80           | 0.869                 | 4.28          | 0.0139                | 1422                   | 637                    | 150                      | 318.5                    | 2.23                  | 0.5                       |
| 0.06  | 60           | 0.652                 | 0.98          | 0.02                  | 308                    | 102                    | 104                      | 51                       | 3.02                  | 2.04                      |
| 0.12  | 40           | 0.432                 | 0.4           | 0.018                 | 208                    | 46                     | 115                      | 23                       | 4.5                   | 5                         |
| 0.16  | 20           | 0.21                  | 0.106         | 0.016                 | 158                    | 14                     | 130                      | 7                        | 11.4                  | 18.8                      |

Из (12) вновь следует, что при фиксированном  $\gamma(t_C)$ , действительно,  $S_{R\Phi}^M > S_{X\Phi}^M$  при более низких температурах. При малых  $\Delta n_{\Phi}$  [4,7] изменение щели описывается выражением  $\Delta/\Delta_0 \cong 1 - 2\Delta n_{\Phi}$ . Для различных температур (ниже  $T_C$ ), воспользовавшись результатами работ [7], в частности зависимостью  $\Delta/\Delta_0$  от  $t_C$  при различных значениях  $n_1 = \Delta n_{\Phi} [4N(0)\Delta_0]^{-1}$  для следующих значений параметров:  $\Phi_0 \cong 0.08 \text{ mW/cm}^2$ ,  $\tau_{3\Phi} \cong 10^{-13} \text{ s}$ ,  $\sin \omega_S t = 1$ ,  $\eta \cong 0.1$ ,  $d \cong 0.3 \,\mu\text{m}$ , рассчитаем значения для  $S_{X\Phi}$  и  $S_{R\Phi}$  согласно (7) и (12). Они приведены в таблице, а зависимости  $S_{X\Phi}$  и  $S_{R\Phi}$  (в относительных единицах) от  $n_1$  показаны на рисунке. Как и ожидалось, из рисунка следует, что с увеличением  $n_1$  и соответственно интенсивности излучения наблюдается уменьшение оптической чувствительности. Относительно высокая чувствительность наблюдается при малых значениях  $n_1$  (или  $\Delta n_{\Phi}$ ), т.е. при малых отклонениях T от  $T_C$  и  $n_S \ll n_N$ .

Заметим, что предсказанный выше более быстрый рост  $R_S$  с освещением по сравнению с ростом  $X_S$  наблюдался в [8] для YBCO пленок; это соотношение имеет место и для зависимости от температуры и, по-видимому, носит общий характер в силу очевидных неравенств  $S_{R\Phi} > S_{X\Phi}$  как для тонких пленок, так и для массивных образцов.

Настоящая работа выполнена в рамках гранта INTAS-96-268.

### Список литературы

- [1] Вендик О.Г. и др. // СФХТ. 1990. Т. З. № 10. С. 2133-2140.
- [2] Vendik O.G., Galchenko S., Kollberg E. et al. Models of HTSC Transmission lines as Applied for CAD of Microwave Integrated Circuits. Rep. N 9, ISSN 1103–4599, ISRN CTH–MVT–R–9–SE. 1994. 98 p.
- [3] Testardi L.R. // Phys. Rev. 1971. V. B4. P. 2189-2196.
- [4] Owen C.S., Scalapino D.F. // Phys. Rev. Lett. 1972. V. 28. P. 1559-1561.

- [5] Parker W.H., Williams W.D. // Phys. Rev. Lett. 1972. V. 29. P. 924-927.
- [6] Parker W.H. // Phys. Rev. B. 1975. V. 12. P. 3667-3774.
- [7] Rothward A. Sai-Halasz G.A., Langenberg D.N. // Phys. Rev. Lett. 1974. V. 33. N 4. P. 212–215.
- [8] Carlsson E., Gevorgian S., Kolberg E. et al. // Proc-IEEE MTT-S Topical Meeting on Optical Microwave Interactions. 1994. P. 195–197.
- [9] Johnson M. // Appl. Phys. Lett. 1991. V .59. N 11. P. 1371-1373.
- [10] Gupta D. et al. // IEEE Trans. Appl. Supercond. 1993. V. 33. P. 2895–2898.
- [11] Track E.K., Drake R.E., Hobenwarterg G.K.G. // IEEE Trans. Appl. Superdond. 1993. V. 3. P. 2899–2902.
- [12] Xin-Hua Hu, Juhasz T., Bron W.E. // Appl. Phys. Lett. 1991. V. 59. N 25. P. 3333–3335.
- [13] Zhang D. Plant D.V., Fetterman H. // Appl. Phys. Lett. 1991. V. 58. P. 1560–1562.
- [14] Moix D.B., Scherrer D.P., Kneubuhl F.K. // Infrared Physics & Technology. V. 37. P. 403–426.
- [15] Mai Zh., Zao X, Zhou F. et al. // Infrared Physics & Technology. 1997. V. 38. P. 13–16.
- [16] Bluser N. // J. Appl. Phys. 1992. V. 71. P. 1336–1351.
- [17] Frenkel A., Saifi M.A., Venkatasen T. et al. // J. Appl. Phys. 1990. V. 67. P. 3054–3059.
- [18] Wu C.J., Tseng T.Y. // IEEE Trans on Appl. Superconductivity. 1996. V. 6. P. 94–101.