05;11;12

Магнитная кристаллографическая анизотропия эпитаксиальных пленок Fe/GaAs (100)

© С.Л. Высоцкий, С.С. Гельбух, А.С. Джумалиев, Г.Т. Казаков, Ю.А. Филимонов, А.Ю. Цыплин

Саратовский филиал Института радиотехники и электроники РАН

Поступило в Редакцию 31 июля 1998 г.

Исследованы анизотропные свойства пленок Fe, полученных методом молекулярно-лучевой эпитаксии на подложках GaAs (100). Показано, что, начиная с толщин t = 40...50 Å, в пленках Fe начинает проявляться кубическая магнитная анизотропия. При толщинах пленок t > 100 Å первая константа кубической анизотропии K_1 приобретает значения, близкие к значениям для "объемных" монокристаллов Fe. В пленках промежуточных толщин 50 < t < 100 Å присутствуют как изотропная, так и анизотропная фазы.

Магнитные свойства тонких пленок и многослойных структур являются на протяжении многих лет объектом пристального исследования [1-7], имеющего своей целью, кроме фундаментального интереса, улучшение свойств среды для магнитной записи информации. Наиболее перспективной технологией получения таких структур является молекулярно-лучевая эпитаксия (МЛЭ), позволяющая сравнительно легко получать структуры, состоящие из различных слоев, толщины которых могут изменяться в широких пределах, начиная с одного монослоя. Исследование столь тонких пленок позволяет наблюдать за формированием, в частности, их анизотропных свойств в зависимости от их толщины, кристаллографической ориентации и состояния поверхности подложки и других факторов. Обнаружено, что с изменением толщины слоев вследствие изменения соотношения вкладов поверхностной и объемной анизотропии может изменяться направление оси легкого намагничивания, например, для монокристаллической пленки Fe (110), выращенной на подложке GaAs {110}; при увеличении толщины пленки направление оси легкого намагничивания изменяется с [110]

88

N⁰	t,Å	$4\pi M_{eff}$, kGs	H_c , Oe	H_{\parallel}	ΔH , Oe
1	30	8.48	_	_	210
2	70	14.2	_	_	150
		14.2	56	-80	100
3	100	15.5	_	_	190
		15.5	232	-156	50
4	140	14.5	252	-70	150

Параметры исследованных пленок

на [001] [2]. Аналогичные результаты были получены для пленки Fe(110), выращенной на подложке {110} W [8].

В данной работе сообщается о результатах исследования анизотропных свойств пленок Fe, выращенных методом МЛЭ на подложках GaAs ориентации (100). Выбор в качестве материала подложки GaAs обусловлен, с одной стороны, его широким использованием при разработке планарных интегральных микросхем, с другой — параметр его кристаллической решетки с точностью не хуже 5% кратен параметру кристаллической решетки Fe.

Для получения пленок Fe использовался электронный спектрометр ЭС 2301, откачиваемый объем которого включает ростовую камеру для проведения МЛЭ и аналитическую камеру для исследования элементного состава поверхности с помощью Оже-спектроскопии. Перемещение образцов между камерами осуществлялось с помощью манипулятора. До начала напыления давление в камере не превышало 10^{-9} mm Hg, а в процессе напыления было не хуже ~ 10^{-8} mm Hg. Скорость напыления железа составила 9 ÷ 10 Å/min. Температура подложки была близка к комнатной. Время напыления составляло 3, 7, 10 и 14 min, что соответствовало толщинами пленок Fe $t_1 \approx 30$ Å, $t_2 \approx 70$ Å, $t_3 \approx 100$ Å и $t_4 \approx 140$ Å (см. таблицу).

Подложки GaAs (100) имели 14 класс полировки поверхности и размер в плоскости $\sim 3\times3$ mm. Перед напылением подложки подвергались химической очистке — 5 min в 40% КОН, после промывки в дистиллированной воде — раствором H₂SO_{4 конц} : H₂O_{2 конц} : H₂O (16:1:1) с последующей промывкой дистиллированной водой и сушкой. Непосредственно перед загрузкой в ростовую камеру проводилась очист-

Рис. 1. Система координат.

ка поверхности GaAs с помощью ультрафиолетового облучения аналогично [9,10] и последующего отжига в течение 30 min при температуре ~ 800°С. При этом существенно снижался уровень примесей углерода и кислорода, что контролировалось по Оже-спектрам поверхности. Контроль состава поверхности повторялся по окончании напыления и свидетельствовал о формировании пленки Fe.

Полученные пленки исследовались методом ферромагнитного резонанса (ФМР) на частоте $f_0 \approx 9.8 \,\text{GHz}$ при комнатной температуре. Образцы располагались в прямоугольном резонаторе таким образом, что магнитное поле H было касательно поверхности и составляло угол θ с направлением оси [100] (рис. 1). При этом регистрировалась зависимость величины резонансного поля H_p от угла θ . Точность отсчета угла θ составляла ($2 \div 3$)°.

Экспериментальная ориентационная зависимость резонансного поля от угла поворота пленки $H_p(\theta)$ сопоставлялась с расчетами зависимости $H_p(\theta)$, которые выполнялись с учетом полей кубической $H_c = K_1/M_0$, нормальной одноосной $H_{\perp} = 2K_{\perp}/M_0$ и плоскостной одноосной $H_{\parallel} = 2K_{\parallel}/M_0$ анизотропии, где K_1 , K_{\perp} и K_{\parallel} — соответственно константы кубической, нормальной одноосной и плоскостной одноосной одноосной анизотропи. При этом считалось, что направление равновесной

намагниченности M_0 составляет угол ψ с направлением поля H_0 , а направление оси I одноосной плоскостной анизотропии составляет угол β с направлением оси [100] (рис. 1). Величина угла ψ рассчитывалась из уравнения

$$-2 \cdot H_0 \cdot \sin \psi + H_c \cdot \sin 4\alpha + H_{\parallel} \cdot \sin 2\eta = 0, \tag{1}$$

где $\alpha = \theta - \psi$, $\eta = \alpha + \beta$. Тогда выражение для определения $H_p(\theta)$ имеет вид

$$(H + 4\pi M_0 + H_\perp)(H - 3H_c \sin^2 2\alpha - H_{\parallel} \sin^2 \eta) = f_0^2 / \gamma^2, \qquad (2)$$

где $H = H_p(\theta)\cos\psi + H_c(2 - \sin^2\alpha) + H_{\parallel}\cos^2\eta$, $\gamma = 2.96$ – гиромагнитное отношение для Fe.

На рис. 2, *a*, *c* показаны экспериментально полученные (кружочки) и рассчитанные с помощью (1) и (2) ориентационные зависимости резонансного поля для исследуемых пленок Fe (см. таблицу). На вставках к рис. 2 показан характерный вид зависимости производной отраженной от резонатора мощности от величины постоянного магнитного поля $\frac{dP}{dH_0}(H_0)$, где расстояние между экстремумами соответствует ширине линии ФМР ΔH , а стрелкой показано положение резонансного поля H_p .

Из рис. 2, *а* можно видеть, что на частоте $f_0 = 9.8$ GHz в интервале полей $H_0 = 0.5-5$ KOe в пленках № 1 и 4 наблюдается только по одной линии резонансного поглощения, которую следует связать с основной модой ФМР. При этом пленка № 1, имеющая наименьшую толщину $t_1 \approx 30$ Å, является изотропной (кривая *I*), тогда как для пленки № 4 толщиной $t_4 \approx 140$ Å ориентационная зависимость $H_p(\theta)$ указывает на наличие анизотропии (кривая *2*). Характер зависимости $H_p(\theta)$ в пленке № 4 отвечает случаю, когда в кубически анизотропной пленке, имеющей направление легкого намагничивания [100] ($K_1 > 0$), присутствует также одноосная плоскостная анизотропия с осью легкого намагниченности пленок $4\pi M_{eff} = 4\pi M_0 + 2K_{\perp}/M_0$ и полей анизотропии H_c и H_{\parallel} , подобранные с помощью (1), (2), а также минимальные зарегистрированные величины ΔH приведены в таблице.

Для пленок Fe промежуточных толщин $t_2 \approx 70$ Å и $t_3 \approx 100$ Å в спектре ФМР наблюдалось по две линии поглощения, отстоящие друг от друга на величину поля $|\delta H_0| < 1$ КОе (см. вставку к рис. 2, *b*). Характер зависимостей $H_p(\theta)$ для этих линий был различным и отвечал

Рис. 2. Расчетные зависимости $H_p(\theta)$ (сплошная линия) и $\Psi(\theta)$ (пунктир): a — для пленок № 1 (кривая I) и 4 (кривая 2), b — для пленки № 2, c — для пленки № 3. Темные и светлые кружочки — экспериментальные данные для изотропной и анизотропной фаз соответственно.

либо изотропному случаю, либо случаю кубически анизотропной пленки с плоскостной одноосной анизотропией (см. рис. 2, *b*, *c*).

Наблюдающуюся в пленках № 2 и 3 дополнительную линию поглощения нельзя связать с возбуждением неоднородных колебаний намагниченности, характеризуемых целым числом полуволн по толщине $(n \ge 1)$ и в плоскости $(k, m \ge 1)$ пленки. Действительно, в пленках Fe намагниченностью $\pi M_0 = 12$ KG, обменной жесткостью $A = 2 \cdot 10^{-6}$ erg/cm и толщиной $t \le 100$ Å резонансные поля основной (n = 0) в первой (n = 1) мод спин-волнового резонанса различаются на величину

$$\delta H_0^{(0,1)} = \frac{\pi^2 \cdot 2A}{t^2 \cdot M_0} \ge 40 \,\mathrm{KOe},\tag{3}$$

что существенно превышает не только наблюдающиеся значения δH_0 , но и доступный в эксперименте интервал изменения поля H_0 . С другой стороны, отличие резонансных полей основной моды и моды, имеющей неоднородное распределение намагниченности в плоскости пленки, можно оценить с помощью дисперсионного соотношения для магнитостатических волн в касательно намагниченной ферромагнитной пленке [10]:

$$\delta H_0^{(0,1)} \approx \frac{\pi^2 \cdot k \cdot t \cdot M_0}{L \cdot (1 + H_0/4\pi M_0)} < 0.1 \,\mathrm{Oe},\tag{4}$$

где L — длина одной из сторон пленки, вдоль которой укладывается k полуволн.

Наиболее вероятной причиной появления двух линий поглощения в спектре ФМР пленок № 2 и 3 может являться неоднородность их текстуры по поверхности, проявляющаяся в сосуществовании изотропной и монокристаллической фазы. На это также может указывать как изменение соотношения амплитуд изотропного и анизотропного откликов, так и расширение интервала углов θ , в котором наблюдается анизотропный отклик с ростом толщины пленки рис. 2, *b*, *c*. Последнее обстоятельство можно связать с влиянием обменного взаимодействия на границах анизотропной и изотропной фаз в тех случаях, когда направления равновесных намагниченностей M_0 внутри указанных фаз не совпадают. Разориентация намагниченностей внутри изотропной и анизотропной фаз определяется углом ψ , который при параметрах, отвечающих анизотропной фазе пленок № 2 и 3, меняется в пределах $|\psi| \leq 5^\circ$, $|\psi| \leq 25^\circ$ соответственно (см. пунктир на рис. 2, *b*, *c*). Из

Рис. 3. Изображение поверхности подложки GaAs.

рис. 2, *b*, *c* видно, что для тех углов θ , при которых $|\psi|$ принимает максимальные значения, в пленках № 2 и 3 наблюдается только один изотропный отклик. При $\psi \to 0$, чему отвечает намагничивание вдоль кристаллографических направлений $\langle 100 \rangle$ и $\langle 110 \rangle$ ($\theta = \pi N/4$, N — целое), наблюдаются как изотропный, так и анизотропный отклики.

Отметим, что величины параметров $4\pi M_{eff}$, H_c и H_{\parallel} в пленках № 1 и 4 и их зависимость от толщины соответствуют приводимым в работах [2,6] для эпитаксиальных пленок Fe на подложках GaAs (100) и (110). Однако на возможность сосуществования изотропной и анизотропной фаз в пленках Fe до сих пор, по-видимому, не указывалось. Объяснение этого факта, на наш взгляд, заключается в состоянии поверхности подложки. На рис. 3 представлено изображение участка поверхности подложки, полученного с помощью атомно-силового сканирующего микроскопа. Амплитуда шероховатости R_z поверхности подложки составляет $R_z \leq 200$ Å и укладывается в пределы, определенные для 14 класса обработки подложек, но при этом оказывается соизмерима с толщинами напыляемых слоев. Оценка среднеквадратичного значения амплитуды шероховатости σ , выполненная аналогично [11], дает зна-

чения $\sigma \approx 30$ Å. Сопоставляя значения σ и толщину пленок t, можно видеть, что при значениях $t \leq \sigma$ формируется изотропная фаза. При $t \geq 3\sigma$ пленка обладает кубической анизотропией. В интервале толщин $\sigma < t < 3\sigma$ в пленке присутствуют как изотропная, так и анизотропная фазы.

Таким образом, в работе показано, что пленки Fe, полученные методом молекулярно-лучевой эпитаксии на стандартных подложках GaAs (100), поверхность которых характеризуется амплитудой шеро-ховатости $R_z < 100$ Å и среднеквадратичным значением $\sigma \approx 30$ Å, начиная с толщин $t = 40 \dots 50$ Å проявляют кубическую магнитную анизотропию. При толщинах пленок t > 100 Å первая константа кубической анизотропии K_1 приобретает значения, близкие к значениям для "объемных" монокристаллов Fe. В пленках промежуточных толщин 50 < t < 100 Å присутствуют как изотропная, так и анизотропная фазы.

Авторы выражают благодарность А.С. Рьянову, С.А. Сысуеву и С.А. Никитову за помощь в работе и полезные обсуждения.

Работа поддержана грантом РФФИ № 97–02–18614 и грантом 97–3.16 по Государственной программе "Актуальные направления физики конденсированных сред", направление "Поверхностные атомные структуры".

Список литературы

- [1] Prinz G.A., Krebs J.J. // Appl. Phys. Lett. 1981. V. 39 (5). P. 397–399.
- [2] Prinz G.A., Rado G.T., Krebs J.J. // JAP. 1982. V. 53 (3). P. 2087–2091.
- [3] Hillebrands B. // Phys. Rev. 1990. B 41. P. 530-540.
- [4] Fullerton Eric E., Conover M.J., Mattson J.E. et al. // Appl. Phys. Lett. 1993.
 V. 63 (12). P. 1699–1701.
- [5] Folkerts W., Hakkens F. // JAP. 1993. V. 73 (8). P. 3922-3925.
- [6] Goryunov Yu.V., Garif'yanov N.N., Khaliullin G.G. et al. // Phys. Rev. 1995. B 52. P. 13450–13458.
- [7] Endo Y., Okamoto S., Kitakami O. et al. // JAP. 1997. V. 81 (1). P. 344-349.
- [8] Kawagachi K., Sohma M. // Phys. Rev. 1992. B 46. P. 14772.
- [9] Tabe M. // Appl. Phys. Lett. 1984. V. 45 (10). P. 1073-1075.
- [10] Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматлит, 1994. 464 с.
- [11] Poon Chin Y., Bhushan B. // JAP. 1996. V. 79 (8). P. 5799-5801.