05;09 Эквивалентные параметры джозефсоновского перехода в схеме СВЧ сквида

© О.Г. Вендик, И.С. Данилов

Санкт-Петербургский государственный электротехнический университет, 197376 Санкт-Петербург, Россия

(Поступило в Редакцию 18 июня 1998 г.)

Соотношения, полученные в результате анализа работы радиочастотного сквида, легли в основу расчета эквивалентных параметров джозефсоновского перехода в схеме СВЧ сквида. В основу анализа положена пилообразная зависимость напряжения на резонансном контуре в функции от постоянного потока смещения. Количественные характеристики позволяют рассматривать джозефсоновский переход как включенный в радиочастотную или СВЧ цепь линейный импеданс, вещественная и мнимая часть которого управляются постоянным магнитным потоком, пронизывающим петлю сквида.

Введение

Принципу работы высокочастотного сквида посвящено много публикаций (см., например, [1,2]). Уже давно проведены первые эксперименты по работе сквида на СВЧ [3]. К настоящему времени спроектированы оригинальные конструкции СВЧ сквидов [4,5], представлена теория работы сквида при температуре 77 К [6]. При этом достаточно подробно разработаны вопросы, связанные с квантовой интерференцией в кольце сквида, воздействием на нее тепловых флюктуаций [1,7] и т. д. При этом расчету СВЧ цепи не уделяется должного внимания. СВЧ часть сквида на словах описывается как высокодобротный резонатор. Связь резонатора с внешними цепями, как правило, подбирается в процессе эксперимента и не подвергается детальному расчету [5]. Таким образом, проектирования СВЧ узлов сквида ведется на основании приближенных соотношений, определяемых в результате экспериментальной работы, т.е. отсутствуют надежные расчетные формулы для разработки и выбора оптимального режима работы СВЧ сквида.

В настоящей работе изложен способ представления эквивалентных параметров джозефсоновского перехода в схеме радиочастотного сквида в гистерезисном режиме работы, позволяющий оптимизировать параметры СВЧ цепи.

Основным элементом эквивалентной схемы сквида является импеданс петли сквида, индуктивно связанный с резонансным контуром. При гистерезисном режиме работы сквида временная зависимость амплитуды напряжения на резонансном контуре представляет собой релаксационный процесс [8]. Однако при условии $T_P \ll \tau \ll T_M$, где T_P — период накачки, τ — время релаксации, T_M — время измерения, выходной сигнал является величиной, усредненной во времени. Поэтому для нахождения отклика кольца с джозефсоновским контактом на постоянный магнитный поток при $\tau \ll T_M$ релаксационный процесс можно исключить из рассмотрения. При этом эквивалентный импеданс петли сквида является функцией только постоянного внешнего магнитного потока.

Такое представление позволяет значительно упростить расчет эквивалентной схемы и, в частности, может быть использовано для анализа и синтеза СВЧ сквида.

1. Размах сигнальной характеристики

Эквивалентная схема одноконтактного сквида представлена на рис. 1. Согласно экспериментальным данным, зависимость напряжения на резонансном контуре V_T от постоянного магнитного потока смещения Φ_{DC} представляет собой пилообразную характеристику [3,5]. В нормированных величинах эта зависимость приведена на рис. 2

$$W(x) = V_T(x)/V_{T,\max},$$
(1)

где

$$V_{T,\max} = I_1 \omega L_T Q. \tag{2}$$

 $x = 2\Phi_{DC}/\Phi_0, \ Q = \omega L_T/R_T$ — добротность контура без учета потерь, вносимых петлей сквида; ω — частота накачки; Φ_0 — квант магнитного потока.

Назовем нормированным размахом сигнальной характеристики величину

$$\Delta W = \Delta V_T / V_{T, \max}, \tag{3}$$

где ΔV_T — разность напряжения на резонансном контуре при двух различных значениях потока смещения $\Phi_{DC} = 0$ (x = 0) и $\Phi_{DC} = \Phi_0/2$ (x = 1).

Тогда аналитически закон изменения выходного сигнала от потока смещения в нормированных величинах можно представить как периодическую функцию от x, которая в пределах первого полупериода изменения Wимеет вид

$$W(x) = (1 - \Delta W \cdot x) \exp(i\psi(x)), \qquad (4)$$

где $\psi(x)$ — фаза комплексной переменной.

Характерная величина $\Delta W \cong 0.5...0.6$. Зависимость |W(x)| в виде пилы подтверждается надежными экспериментальными данными [1–5]. Нам неизвестно ни

Рис. 1. Эквивалентная схема одноконтактного сквида: Z_S — эквивалентный импеданс джозефсоновского контакта; L_S — индуктивность петли сквида; M — взаимная индуктивность; L_T — индуктивность контура; R_T — активное сопротивление контура; C_T — емкость контура; I_1 — ток накачки; V_T — измеряемое напряжение.

Рис. 2. Пилообразная зависимость нормированного напряжения на резонансном контуре от нормированного постоянного потока смещения.

Рис. 3. Зависимости нормированного напряжения на контуре от тока накачки для случая связи петли сквида и колебательного контура, близкой к оптимальной.

экспериментального, ни теоретического изучения зависимости фазы напряжения на резонансном контуре $\psi(x)$ от постоянного магнитного потока смещения.

Существует оптимальная связь петли сквида и резонансного контура [1] $k^2 Q_{\text{opt}} \approx 1$, где $k = M^2/(L_T L_S)$ — коэффициент взаимосвязи. При этом размах сигнальной характеристики максимален. Для условия, близкого к

Рабочий ток накачки I_1 выбирается таким образом, чтобы при нулевом потоке смещения $\Phi_{DC} = 0$ (x = 0) петля сквида имела чисто мнимый импеданс и не поглощала мощность из резонансного контура. При потоке смещения $\Phi_{DC} = \Phi_0/2$ (x = 1) диссипация энергии из контура компенсируется за один период ВЧ колебаний [9]. Это соответствует значению тока $I_1 = I_1^{**}$ (рис. 3). Итак, при условии x = 0 импеданс петли сквида имеет только реактивную составляющую, при x = 1импеданс имеет как реактивную, так и значительную активную составляющую.¹

Из рис. 3 при рассмотрении подобных треугольников *AOB* и *A'OB'* следует, что

$$\Delta W = 1 - I_1^* / I_1^{**}. \tag{5}$$

Для нахождения зависимости ΔW от основного параметра сквида $l = 2L_S I_C / \Phi_0$, где I_C — критический ток джозефсоновского перехода, необходимо проанализировать зависимость полного магнитного потока Φ от внешнего Φ_E . Данная зависимость в нормированных на $\Phi_0/2\pi$ величинах имеет вид [9]

$$\varphi_E = \varphi + l\sin(\varphi), \tag{6}$$

где $arphi_E=2\pi\Phi_e/\Phi_0,\,arphi=2\pi\Phi/\Phi_0.$

График зависимости $\varphi(\varphi_E)$ для $l \approx 3$ представлен на рис. 4. Для точек (1), (2), (3), (4) перегиба функции $\varphi_E(\varphi)$ можно записать $d\varphi_E/d\varphi = 0$, что с учетом (6) лает

$$1 + l\cos(\varphi) = 0. \tag{7}$$

Поток в точках перегиба оказывается функцией параметра *l*. Для дальнейшего аналитического рассмотрения наиболее удобно работать со второй точкой перегиба. Так, для нее

$$\varphi_2(l) = \pi - \arccos(1/l). \tag{8}$$

Используя выражение (6), для φ_{E2} имеем

$$\varphi_{E2}(l) = \pi - \arccos(1/l) + (l^2 - 1)^{0.5}.$$
 (9)

При условии оптимального выбора рабочего тока накачки (рис. 4) амплитуда изменения нормированного радиочастотного магнитного потока, вносимого из контура в петлю сквида, будет равна

$$\varphi_{RF}^{\max} = \varphi_{E2}$$
 при $x = 0,$
 $\varphi_{RF}^{\min} = \varphi_{E2} - \pi$ при $x = 1.$ (10)

¹ Здесь в эквивалентной схеме джозефсоновского контакта $R_N \to \infty$ (R_N — нормальное сопротивление в схеме резистивно-шунтовой модели [2]), что справедливо при достаточно низких частотах ВЧ колебаний. На СВЧ R_N должен быть включен в рассмотрение. В этом случае при x = 0 импеданс, вносимый в контур, уже не будет чисто мнимым.

Таблица 1. Значения нормированного размаха выходного сигнала

l	ΔW
1	1
1.5	0.92
2	0.82
2.5	0.73
3	0.66
3.5	0.6
4	0.55
4.5	0.51
5	0.47

Связь между током накачки и нормированным внешним потоком можно выразить как

$$\varphi_E = \frac{2\pi}{\Phi_0} M Q I_1. \tag{11}$$

Используя (11), получаем для характерных значений тока накачки (I_1^*, I_1^{**}) , представленных на рис. 3,

$$I_1^{**} = (\varphi_{RF}^{\max} \cdot \Phi_0)/(2\pi MQ)$$
 при $x = 0,$
 $I_1^* = (\varphi_{RF}^{\min} \cdot \Phi_0)/(2\pi MQ)$ при $x = 1.$ (12)

Подставляя (12) в (5) с учетом (10), получим

$$\Delta W(l) = \pi/\varphi_{E2}(l). \tag{13}$$

В табл. 1 приведены значения нормированного размаха сигнальной характеристики ΔW , соответствующие различным значениям основного параметра сквида l, вычисленные с использованием выражений (9) и (13).

Постановка задачи об интерполяции усредненного значения импеданса, вносимого петлей СВЧ сквида в резонансный контур

Закон изменения ВЧ напряжения на резонансном контуре, представленный выражением (4), является экспериментальным фактом, причем значение ΔW определено как функция основного параметра сквида l (табл. 1). Использование выражения (4) позволяет избежать расчета релаксации напряжения на контуре, а рассматривать усредненное напряжение на контуре как реакцию на усредненный импеданс, внесенный петлей сквида в контур.

Сначала рассмотрим режим работы сквида в двух точках при x = 0 и 1, в которых нет релаксации напряжения на контуре. Найденные значения импеданса в этих точках позволят с помощью (4) произвести интерполяцию зависимости импеданса на все значения x, входящие в интервал $0 \le x \le 1$. При этом нужно будет сделать некоторые предположения о поведении

фазы напряжения на контуре как функции *х*. В итоге мы должны получить значения комплексного импеданса, вносимого петлей сквида в контур при всех значениях *х*.

Итак, следующие разделы посвящены нахождению импеданса петли сквида, на которую воздействуют оптимальный по величине (7) ВЧ магнитный поток и постоянный поток смещения при двух его значениях $\Phi_{DC} = 0$, $\Phi_{DC} = \Phi_0/2$.

3. Значение импеданса петли сквида при $\Phi_{DC} = 0$

Для нахождения импеданса петли сквида при $\Phi_{DC} = 0$ еще раз обратимся к зависимости $\varphi(\varphi_E)$, представленной на рис. 4. Петля "опрашивается" сигналом вида

$$\varphi_{RF}(t) = \varphi_M \cos(\omega t). \tag{14}$$

Поток через петлю $\varphi(t)$ находится как решение нелинейного уравнения (6), которое мы перепишем в таком виде:

$$\varphi(t) + l\sin(\varphi(t)) = \varphi_M \cos(\omega t). \tag{15}$$

При условии, что

$$\varphi_M = \varphi_{E2} - \xi, \tag{16}$$

где $\xi \ll \varphi_{E2}$, решение (15) получается в виде однозначной функции. Ток в петле сквида определяется

Рис. 4. Зависимость нормированного полного магнитного потока φ через петлю сквида от нормированного внешнего потока φ_E .

Журнал технической физики, 1999, том 69, вып. 11

Таблица 2. Значения реактивной составляющей импеданса при $\Phi_{DC} = 0$

1	x_S
2	0.77
2.5	0.59
3	0.48
3.5	0.40
4	0.35
4.5	0.31
5	0.27

фундаментальным выражением [1,2]

$$I_S(t) = I_C \sin(\varphi(t)). \tag{17}$$

Представим ток в виде разложения в ряд Фурье. Ограничимся первым членом разложения

$$I_S(t) = A\cos(\omega t) + B\sin(\omega t), \qquad (18)$$

где

$$A = \frac{1}{\pi} \int_{-\pi}^{\pi} I_{S}(t) \cos(t) dt,$$
 (19)

$$B = \frac{1}{\pi} \int_{-\pi}^{\pi} I_{S}(t) \sin(t) dt.$$
 (20)

Уравнение Кирхгофа для кольца имеет вид

$$L_{\Sigma}\frac{\partial I_S}{\partial t} + RI_S = \frac{\partial \Phi}{\partial t},\tag{21}$$

где L_{Σ} — индуктивность петли сквида с учетом вклада индуктивности джозефсоновского контакта.

Учитывая, что $\Phi_M = \varphi_M(\Phi_0/2\pi)$, и приняв во внимание вид опрашивающего сигнала (14), выражение (21) можно представить как систему уравнений:

$$-\omega L_{\Sigma} \cdot A + R \cdot B = -\omega \frac{\Phi_0}{2\pi} \varphi_M,$$

$$R \cdot A + \omega L_{\Sigma} \cdot B = 0.$$
(22)

Введем понятие "нормированный импеданс джозефсоновского контакта"

$$z_S = Z_S / \omega L_S, \tag{23}$$

где $L_S = \Phi_0 / (2\pi I_C)$.

Тогда нормированные активная и реактивная составляющие r_S и x_S имеют вид

$$r_S = R/\omega L_S, \quad x_S = (\omega L_\Sigma - \omega L_S)/\omega L_S.$$
 (24)

Используя выражения (22) и (24), можно представить r_S и x_S в виде

$$r_{S} = -I_{C} \frac{\varphi_{M}}{l} \frac{B}{A^{2} + B^{2}}, \quad x_{S} = I_{C} \frac{\varphi_{M}}{l} \frac{A}{A^{2} + B^{2}} - 1.$$
 (25)

При условии, заданном выражением (16), активная составляющая импеданса равна нулю B = 0, $r_S = 0$. Вычисление по формулам (25) дает значения $x_S(l)$ при $\Phi_{DC} = 0$, которые приведены в табл. 2.

4. Значение импеданса петли сквида при постоянном магнитном потоке смещения $\Phi_0/2$ (x = 1)

а) Поиск с использованием разложения в ряд Фурье. Рассмотрим вид временны́х зависимостей φ при значениях амплитуды радиочастотного сигнала, заданных выражением

$$\varphi_M = \varphi_{E2} - \pi \pm \xi. \tag{26}$$

При $\varphi_M = \varphi_{E2} - \pi - \xi$ решение (15) получается в виде однозначной функции и временная зависимость $\varphi(t)$ будет иметь вид, показанный на рис. 5, *а*. При $\varphi_M = \varphi_{E2} - \pi + \xi$ вид временной зависимости определяется "проскальзыванием" кванта магнитного потока и имеет вид, представленный на рис. 5, *b*.

Рис. 5. Временные зависимости нормированного полного магнитного потока φ через петлю сквида при (x = 1), соответствующие условиям: $a - \varphi_M = \varphi_{E2} - \pi - \xi$, $b - \varphi_M = \varphi_{E2} - \pi + \xi$, $c - \varphi_M = \varphi_{E2} - \pi + \xi$, для $\omega t = [\pi/2, \pi] + \pi n$, $n = 0, 1, 2, \ldots$ значение нормированного полного магнитного потока φ уменьшено на 2π .

Журнал технической физики, 1999, том 69, вып. 11

Учитывая, что изменение фазы на 2π не влияет на представление сигнала в виде разложения в ряд по тригонометрическим функциям, можно записать временну́ю зависимость для случая (26) в виде зависимости, приведенной на рис. 5, *с*. В этом случае разложение в ряд Фурье даст как вещественную, так и мнимую составляющие. Результат расчета приведен в табл. 3.

б) Поискактивной составляющей с использованием выражения для площади петли гистерезиса. Активную составляющую импеданса петли сквида можно получить, используя выражение для площади петли гистерезиса и закон сохранения энергии [1,8]. Еще раз вернемся к рис. 4, из которого видно, что для вычисления площади петли гистерезиса необходимо из площади прямоугольника *ABCD* вычесть удвоенную площадь прямоугольника *ABEF* и удвоенную площадь фигуры *FEB'G*

$$S(l) = ABCD - 2ABEF - 2FEB'G, \qquad (27)$$

где

$$ABCD = 2\pi(\varphi_{E2}(l) - \varphi_{E1}(l)), \qquad (28)$$

$$2ABEF = 2\left((\varphi_2(l) - \varphi^*(l))\varphi_{E2}(l) - \int_{\varphi^*(l)}^{\varphi_2(l)} (\varphi + l\sin(\varphi))d\varphi\right), \quad (29)$$

$$2FEB'G = 2(\varphi_{E2}(l) - \varphi_{E1}(l))\varphi^*(l).$$
 (30)

При выводе формулы для площади петли гистерезиса использовались условие (7) и зависимость, заданная выражением (6). При этом удается найти точные аналитические выражения для φ_{E1} , φ_{E2} , φ_1 , φ_2 как функций от *l*. Нахождение точного аналитического выражения для $\varphi^*(l)$ приводит к громоздким вычислениям. Однако можно найти приближенную аналитическую функцию из соотношения для подобных треугольников *AOA*' и *BOB*'

$$\varphi^*(l) = \varphi_2 \varphi_{E1} / \varphi_{E2}. \tag{31}$$

Необходимо отметить, что ошибка при оценке площади гистерезиса не превышает 5%. Для l = 5 рассчитанное по формуле (27) значение S(l) хорошо согласуется с данными [8].

Таблица 3. Значения активной и реактивной составляющих импеданса при $\Phi_{DC} = \Phi_0/2$

l	r_S	x_S
2	0.40	-0.98
2.5	0.48	-0.91
3	0.50	-0.84
3.5	0.50	-0.77
4	0.49	-0.72
4.5	0.47	-0.66
5	0.45	-0.62

Рис. 6. Зависимость активной составляющей экивалентного импеданса джозефсоновского контакта *r_s*. Кружки — значения, рассчитанные с использованием разложения тока в ряд Фурье; сплошная кривая — значения, вычисленные через расчет площади петли гистерезиса.

При потоке смещения, равном $\Phi_{DC} = \Phi_0/2$ (x = 1) и амплитуде тока накачки, соответствующей восстановлению энергии в контуре, потраченной на цикл гистерезиса за один период, справедлив закон сохранения энергии

$$\frac{\omega}{2\pi} \frac{S(l)}{4\pi^2} \Phi_0^2 \frac{1}{L_S} = \frac{1}{2} I_C^2 R.$$
(32)

Из (29) следует

$$R = \omega L_S r_S(l), \quad r_S(l) = S(l)/(\pi l^2).$$
 (33), (34)

Зависимость $r_S(l)$, найденная по формуле (34), и численные значения r_S из табл. 3, полученные в результате разложения тока в ряд Фурье, представленны на рис. 6.

5. Зависимость импеданса петли сквида от потока смещения

Для схемы, представленной на рис. 1, справедливо равенство

$$\left(\frac{1}{i\omega L_T + (\omega M)^2 / (i\omega L_S + Z_S)} + R_T^{-1} + i\omega C_T\right) V_T = I_1. \quad (35)$$

Преобразуем (35), используя, в частности, малость коэффициента связи *k*, к виду

$$\left(1 - \omega^2 L_T C_T + k^2 \left(1 - i \frac{Z_S}{\omega L_S}\right)^{-1} + i \frac{1}{Q}\right) \frac{V_T}{i \omega L_T} = I_1. \quad (36)$$

Введем обозначение

$$u = \frac{\omega_0^2 - \omega^2}{\omega_0^2} Q.$$
 (37)

Параметр *и* является нормированной расстройкой контура. Используя (37), преобразуем выражение (36)

$$\left(iu - ip\left(1 - i\frac{Z_S}{\omega L_S}\right)^{-1} + 1\right)\frac{V_T}{\omega L_T Q} = I_1, \qquad (38)$$

Журнал технической физики, 1999, том 69, вып. 11

где

$$p = k^2 Q. \tag{39}$$

Окончательно для нормированного выходного напряжения имеем

$$W = \left(1 + iu - i\frac{p}{1 - iz_S}\right)^{-1}.$$
 (40)

Из (40) находим нормированное эквивалентное сопротивление петли сквида

$$z_{S} = \frac{p}{-1 - iu + 1/W(x)} - i.$$
(41)

Когда x = 0, активная составляющая равна нулю $r_S = 0$, нормированное напряжение равно единице W(0) = 1. При этом условие из выражения (40) можно получить зависимость для расстройки контура, которая компенсирует индуктивность, вносимую в контур петлей сквида при $\Phi_{DC} = 0$, и обеспечивает максимальную амплитуду напряжения на контуре при заданной (см. выражение (16)) амплитуде радиочастотного сигнала и $\Phi_{DC} = 0$

$$u(l) = p \frac{1}{1 + x_S(l)},\tag{42}$$

где $x_S(l)$ соответствует значениям реактивной составляющей, поиску которой посвящен раздел 3.

6. Интерполяция r_S и x_S на интервале $0 \leq x \leq 1$

Итак, мы получили величину импеданса петли сквида при x = 0 (табл. 2) и при x = 1 (табл. 3) как функции основного параметра сквида. Теперь нам следует произвести заявленную выше интерполяцию r_S и x_S для всех значений x в интервале $0 \le x \le 1$. Учитывая, что контур настроен на максимальную амплитуду при x = 0, подставим (42) в (41) и используем также (4). В результате получим

$$r_{S}(x,l) + ix_{S}(x,l) = p(l) \left(-1 - i \frac{p(l)}{1 + x_{S}(0,l)} + \frac{1}{1 - \Delta W(l)x} \exp(-i\Psi(x,l)) \right)^{-1} - i.$$
(43)

При x = 0 соотношение (43) обращается в тождество, если $\Psi(0, l) = 0$. При x = 1 соотношение (43) позволяет найти p(l) и $\Psi(1, l)$, опираясь на данные табл. 3. Данные расчета сведены в табл. 4.

Полученные значения параметра p(l) обеспечивают при заданном l пилообразный закон изменения W(x), положенный как базовый экспериментальный факт в основу настоящего анализа. Из приведенных данных можно сделать вывод, что для характерных значений $3 \leq l \leq 5$ величина p близка к единице. Интересно

Таблица 4.

l	p(l)	$\Psi(1,l)$
2	1.82	-0.13
2.5	1.37	-0.09
3	1.09	-0.03
3.5	0.92	0.02
4	0.80	0.05
4.5	0.73	0.08
5	0.68	0.10

отметить, что при l < 2 наблюдается резкое увеличение оптимального p. Уменьшение l может быть выгодно для достижения большего выходного сигнала (табл. 1). Однако ограничением служит конструктивная трудность обеспечения сильной взаимосвязи контуров, т. е. p, значительно большего единицы.

a) Импеданс, вносимый в контур петлей сквида. Полный импеданс индуктивной ветви резонансного контура с учетом импеданса, вносимого петлей сквида, выражается как

$$Z_L = i\omega L_T + Z_B. \tag{44}$$

где

$$Z_B(x,l) = \frac{(\omega M)^2}{\omega L_S(i+ix_S(x,l)+r_S(x,l))}$$
(45)

— вносимый в контур импеданс.

Нормируем Z_B по отношению к активному сопротивлению, включенному в индуктивную ветвь контура $\omega L_T/Q$,

$$R_S(x,l) + iX_S(x,l) = \frac{Z_B(x,l)}{\omega L_T}Q.$$
(46)

В соответствии с (44) имеем

$$R_S(x,l) + iX_S(x,l) = \frac{p}{i(1+x_S(x,l)) + r_S(x,l)}.$$
 (47)

Теперь нужно сделать предположение о том, как фаза напряжения на контуре зависит от нормированного постоянного потока. Положим, что $\Psi(x)$ имеет вид степенной функции

$$\Psi(x,l) = \Psi(1,l)x^{\alpha}.$$
(48)

Единственным неизвестным в (48) является показатель степени α . Φ_{DC} является внешним воздействием, вызывающим перестройку резонансного контура. Положим, что для колебательного контура при рассмотрении резонансных процессов активная составляющая в функции от параметра, характеризующего внешнее воздействие, должна иметь зависимость, близкую к параболе, а реактивная — зависимость, близкую к прямой. При построении R_S и X_S (с помощью (47), (48) и 43)) было выявлено, что при изменеии α наилучшее соответствие для требуемого хода кривых наблюдается при $\alpha = 1$. Теперь можно построить зависимость активной и реактивной составляющих от нормированного потока смещения (график представлен на рис. 7). Для тех же значений параметра l на рис. 8 приведена зависимость R_S и X_S от постоянного нормированного потока смещения. Из рис. 8 можно сделать вывод, что меньшим значениям l соответствуют бо́льшие значения R_S , что обеспечивает бо́льшую модуляцию амплитуды накачки на контуре. При этом X_S слабо завсит от l.

На этом этапе анализа в случае необходимости можно учесть наличие R_N в схеме джозефсоновского контакта, рассматриваемого в рамках резистивно-шунтовой модели [1,2]. R_N следует подключить параллельно импедансу контакта $\omega L_S(r_S + ix_S)$.

Следует иметь в виду, что цепь, содержащая контакт джозефсона, нелинейна. Найденный импеданс как функция Φ_{DC} реализуется при определенном токе накачки, который обеспечивает при $\Phi_{DC} = 0$ максимальный Φ_{RF} на грани возникновения гистерезиса. Важно также, что оптимальный режим пилообразной модуляции на контуре обеспечивается при найденной величине параметра $p = k^2 Q$, близкой к единице.

Рис. 7. Зависимости активной $r_s(a)$ и реактивной $X_s(b)$ составляющих импеданса джозефсоновского контакта от нормированного потока смещения для различных значений основного параметра сквида l = 2(1), 3(2), 4(3), 5(4).

Рис. 8. Зависимости активной $R_S(a)$ и реактивной $X_S(b)$ составляющих вносимого импеданса от нормированного потока смещения для различных значений основного параметра сквида l = 2(1), 3(2), 4(3), 5(4).

Найденная зависимость R_S и X_S от постоянного магнитного потока, пронизывающего петлю сквида, позволяет произвести полный расчет СВЧ цепи, в которую включен сквид, и осуществить оптимизацию СВЧ отклика сквида на внешнее воздействие в виде постоянного магнитного потока.

Список литературы

- [1] Тинкхам М. Введение в сверхпроводимость. М.: Атомиздат, 1980. 310 с.
- [2] Лихарев К.К. Системы с джозефсоновскими контактами: основа теории. М.: МГУ, 1978. 446 с.
- [3] Корнев В.Н., Лихарев К.К. и др. // РиЭ. 1980. № 12. Т. 26. С. 2647–2655.
- [4] Zhang Y., Wolters N., Zeng X.H. et al. // 6th Intern. Supercond. Electronics Conf. Berlin, 1997. Vol. 1. P. 51-53.
- [5] Zhang Y, Muck M., Braginski A.I., Topfer H. // Supercond. Sci. Technol. 1994. Vol. 7. P. 269–272.
- [6] Chesca B. // 6th Intern. Supercond. Electronics Conf. Berlin, 1997. Vol. 1. P. 54–56.
- [7] Ryhanen T., Seppa H., Ilmoniemi R. et al. // Low Temperature Phys. 1989. Vol. 76. N 5/6. P. 287–386.
- [8] Лаунасмаа О.В. Принципы и методы получения температур ниже 1 К. М.: Мир, 1977. 356 с.
- [9] Шмидт В.В. Введение в физику сверхпроводников. М.: Наука, 1982. 240 с.