04;07;12 Биполярный коронный разряд атмосферного давления в смеси He / H₂

© А.К. Шуаибов

Ужгородский государственный университет, 294 Ужгород, Украина

(Поступило в Редакцию 2 апреля 1998 г.)

Приводятся результаты исследования характеристик стационарной плазмы на смеси He / H₂ при высоких давлениях. Плазма образовывалась во внешней области многоэлектродного коронного разряда. Показано, что в данной среде образуются молекулы гидрида гелия, распадающиеся с высвечиванием континуума в области 350–650 nm. Коронный разряд распределен по длине и может применяться в системах поперечной электрической прокачки рабочей среды плазменных излучателей атмосферного давления. Изучались обзорные спектры излучения плазмы, зависимости относительной интенсивности линий и яркости полос He^{*}₂ от величины тока разряда, давления и состава рабочей смеси.

Введение

Смеси He/H₂ атмосферного давления при возбуждении в электроионизационном разряде (длительность $\geq 0.1 \text{ ms}$) представляют значительный интерес для применения в ИК лазерах на колебательно-вращательных переходах галогенводородных молекул (HF, HCl и др.) и детально изучались как при комнатных температурах газовой среды [1], так и при азотных (T = 100 K) [2].

В [3-5] показана возможность создания импульснопериодического лазерного излучателя на А-Х-переходе эксимерной молекулы HeH* с $\lambda_{\rm max}$ = 460 nm и $\Delta \lambda = 310 \,\mathrm{nm}$ при возбуждении смеси He/H₂ модулированными пучками электронов высокой энергии или при оптической накачке. Для поддержания оптимальной газовой температуры такие излучатели нуждаются в прокачке и охлаждении рабочей среды. Поэтому в них может найти применение электрическая прокачка газовых смесей, основанная на использовании многоэлектродного коронного разряда (КР) [6,7], который равномерно распределен по длине активной среды излучателя. КР применяется также в электрофильтрах для удаления твердых частиц, распыляемых в системе электродов плазменного излучателя. Условия получения устойчивых КР в смесях Не/Н2 при высоких давлениях ранее не изучались. При более низком давлении смеси Не/Н2 (< 0.2 kPa) использовались в лазерных плазменных излучателях на атомах HeI ($\lambda = 706.5 \, \text{nm} \, [8-10]$), но в данном случае применение электрической прокачки трудно выполнимо из-за неустойчивостей КР при низком давлении газовой среды. В большинстве случаев смеси Не/Н2 исследовались при импульсном возбуждении пучками электронов или поперечным разрядом, поэтому представляет физический интерес излучение параметров плотной плазмы на основе данной смеси и при стационарной электроразрядной накачке. Плазма при таких условиях возбуждения должна быть переохлажденной, что важно для образования эксимерных молекул НеН* и He₂H*, а также исследования кинетики процессов в таких средах.

В настоящей работе приводятся результаты исследования электрических и оптических характеристик биполярного коронного разряда отрицательной полярности, зажигаемого в рабочей среде плазменного излучателя атмосферного давления на смеси He/H₂.

Техника и условия эксперимента

Многоэлектродный КР исследовался на установке, описанной в [11,12]. Использовалась система электродов (СЭ), состоящая из одного ряда иголок и полупрозрачной металлической сетки. Радиус закругления острия иголок составлял 0.1–0.2 mm, а радиус проволочек сетки — 0.15 mm. Плотность иголок в ряду 1 иголка на 1 cm длины, а общая длина СЭ равнялась 11 или 17 cm. Через ограничительный резистор $R = 1-3 M\Omega$ на иголки подавалось постоянное напряжение отрицательной полярности ($U \leq 10 \text{ kV}, I \leq 15 \text{ mA}$). Излучение плазмы КР исследовалось при полном обзоре всего межэлектродного промежутка. Излучение горячих зон, формирующихся вблизи острий иголок, экранировалось. Анализ излучения плазмы проводился при помощи монохроматора

Рис. 1. ВАХ отрицательного коронного разряда в гелии при P = 200 (1) и смеси He/H₂ = 200/1.2 kPa (2).

Рис. 2. Обзорный спектр излучения плазмы КР на смеси Не/Н₂.

ДФС-12, ФЭУ-106, усилителя постоянного тока У5-9 и самописца. Разрешение спектрофотометра было не хуже 0.1 nm. Относительная калибровка системы регистрации излучения проводилось с использованием эталонных ламп ДВС-25 и СИ 8-200.

Разряд существовал в стационарном режиме. Возможное наличие импульсной составляющей излучения плазмы контролировалось при помощи электронного линейного умножителя 14-ФС и скоростного импульсного осциллографа С1-79.

Пространственные, электрические и оптические характеристики

КР в смеси He/H₂ устойчиво зажигался при давлении 50–300 kPa и наблюдался в форме пространственно однородного разряда аналогично разрядам в смесях He/Ar, Kr, Xe [13]. Поперечная апертура плазмы KP имела вид равнобедренного треугольника с основанием на заземленном электроде. Увеличение напряжения на иголках приводило к появлению стримерного пробоя возле одной из иголок при давлении, превышающем 150 kPa, или к зажиганию дуги при более низком давлении. Увеличение содержания молекул H₂ ($P \ge 5-10$ kPa) приводило к

исчезновению пространственно однородного разряда во внешней области КР и формированию ярких горячих зон вблизи острий иголок аналогично КР на смесях He/N₂ или He/CO [11].

Типичные вольт-амперные характеристики (ВАХ) КР в Не и смеси Не/H₂ приведены на рис. 1. В гелии ВАХ КР имеют форму, близкую к линейной, а для смеси He / H₂ на BAX различались две стадии данного разряда, каждая из которых может быть описана линейной ВАХ. Скорость роста тока на сильноточной стадии КР в смеси с H₂ 3 mA/kV, а на слаботочной 0.25 mA/kV. Основное отличие между ВАХ в данных средах может быть обусловлено образованием отрицательных ионов H⁻ в смеси Не / Н2 при повышенном зарядном напряжении на иголках, а при более низком U — эффективным возбуждением высоких колебательных состояний H₂(v) [14], вступающих в реакцию диссоциативного прилипания с электронами [1]. Зависимость потенциала зажигания и области устойчивого существования разряда по величине U при изменении давления смеси HE/H_2 (при $[H_2] \leqslant 5 \, \text{kPa})$ была подобной соответствующим данным для смесей He/Xe/Ar и др. [13]. Основными носителями положительного заряда в исследуемой среде являются ионы H_3^+ и He_2^+ [4,5], а отрицательного — ионы H^- и электроны.

Рис. 3. Зависимость относительной интенсивности излучения линий атома Не в КР на смеси He / H₂ = 200/1.2 kPa (*1–3*) и He (*4*, *5*): 587.6 (*1*, *5*); 501.6 (*2*); 388.9 nm (*3*, *4*).

Рис. 4. Зависимость яркости излучения полос He_2^* от содержания молекул H₂ в смеси $\text{He}/\text{H}_2 = 200[\text{H}_2]$ kPa: I = 505.7 nm $\text{He}_2(e^3\Pi_g - a^3\Sigma_u^+)$ (0.1); 2 = 473.3 nm $\text{He}_2(E^1\Pi_g - A^1\Sigma_u^+)$ (1.0); 3 = 464.9 nm $\text{He}_2(e^3\Pi_g - a^3\Sigma_u^+)$ (0.0).

На рис. 2 приведен спектр излучения плазмы КР в смеси He/H₂ при I = 1.5 mA. Спектр представлен без учета относительной калибровки спектрофотометра (k_{λ}) . Расшифровка спектров излучения проводилась при помощи таблиц [15,16]. Для спектров излучения плазмы на основе He и смеси He/H₂ характерным было наличие континуума в области 360–650 nm. На фоне непрерывного излучения наблюдались наиболее интенсивные линии атома He: 388.9, 501.6, 587.6 nm и ряд молекулярных

полос He_2^* в сине-зеленой области спектра. Штриховой кривой на рис. 2 приведен континуум излучения в чисто гелиевой среде (при [He] = 200 kPa) (который может быть отождествлен с переходами He_2^+ (*C*-*A*) [13]) при тех же условиях возбуждения и регистрации излучения, что и для плазмы на смеси He / H₂. Интенсивность непрерывного излучения плазмы на смеси He / H₂ значительно выше, чем в гелиевой среде.

На рис. 3 и 4 приведены зависимости относительной интенсивности излучения (с учетом k_{λ}) от величины тока КР и яркости полос He^{*}₂ от содержания молекул H₂ в смеси He/H₂. Зависимости интенсивности линий HeI от тока имели линейную форму. Наиболее интенсивной в плазме КР на смеси He/H₂ была линия 587.6 nm, а в чистом Не превалировало излучение линии 388.9 nm. Добавки молекул H₂ к Не наиболее сильно сказывались на интенсивности линии 388.9 nm и слабо влияли на линию 587.6 nm (рис. 3). При разрядных токах ≤ 0.8 mA интенсивность линии 587.6 nm в плазме на смеси He/H₂ была выше, чем в Не среде, но при $I \geq 0.8$ mA соотношение их интенсивностей становится обратным. Увеличение содержания молекул H₂ в смеси He/H₂ приводит к сильному тушению излучения полос He^{*}₂.

Таким образом, небольшие добавки молекул H_2 к Не значительно влияют на форму ВАХ КР, приводят к значительному росту яркости непрерывного излучения в диапазоне 360–650 nm и сильному тушению излучения линии 388.9 nm HeI и полос He_2^* .

Обсуждение результатов

Возбужденные атомы He (n = 2, 3) в плотной слабоионизированной плазме образуются в процессе диссоциативной рекомбинации [17] или ступенчатого возбуждения. При этом реакция диссоциативной рекомбинации возможна только с ионами He⁺₂ $(v \ge 3)$ [18]. Сравнение распределения относительных интенсивностей линий HeI с распределением эффективных сечений ступенчатого возбуждения соответствующих линий He [19] показало, что они не коррелируют между собой. Поэтому более предпочтительным является вклад реакции диссоциативной рекомбинации ионов He⁺₂ $(v \ge 3)$ с электронами в заселение HEI (n = 3, 4).

Появление континуума в излучении плазмы на смеси He/H₂ связано с образованием эксимерных молекул HeH* [5]. Основное состояние HeH является разлетным, а нижние возбужденные состояния устойчивы с энергией связи $\geq 2.3 \text{ eV}$ [20,21]. Обнаруженный в [20] континуум HeH с максимумом при 250 nm принадлежит переходу $B^2\Pi - X^2\Sigma^+$ молеулы HeH, а более длинноволновое излучение HeH может быть отнесено к системе $A^2\Sigma^+ - X^2\Sigma^+$ [21]. Состояние $A^2\Sigma^+$ имеет низкое время жизни относительно предлиссоциации — 0.65 ps, что значительно ниже соответствующих времен жизни HeH (B, v = 1-5) — 56–5 ns [22].

Образование молекул HeH* в плазме КР на смеси He / H₂ происходит в результате реакций [3–5,21]

$$\mathrm{He} + \mathrm{H}_2(C^1\Pi_u, B^1\Sigma_u^+) \to \mathrm{HeH}^* + \mathrm{H}, \qquad (1)$$

$$H(2s, 2p) + 2He \rightarrow HeH^* + He, \qquad (2)$$

$$\operatorname{HeH}^+ + e + (\operatorname{He}) \to \operatorname{HeH}^* + (\operatorname{He}),$$
 (3)

$$\operatorname{He}_{2}\mathrm{H}^{+} + e + (\operatorname{He}) \to \operatorname{He}\mathrm{H}^{*} + (\operatorname{He}).$$
 (4)

Преимущественное заселение 3³D-состояния HeI, верхнего для линии 587.6 nm, обусловлено селективным характером реакции диссоциативной рекомбинации ионов He_2^+ ($v \implies 3$) [17] и перемешиванием их электронным ударом. Константа скорости процесса перемешивания 3³D-состояний HeI отрицательна [23], поэтому они играют роль акцептора энергии и линия 587.6 nm значительно выделяется по интенсивности в спектрах излучения плазмы. В плазме КР молекулы H₂ приводили к тушению излучения линий HeI, за исключением линии 587.6 nm, при токах разряда $\leq 0.8 \,\text{mA}$ (рис. 3). Увеличение интенсивности излучения этой линии HeI может быть связано с расселением ее нижнего состояния за счет процессов пеннинг-ионизации молекул Н₂ [24,25]. При атмосферном давлении рабочей смеси одним из основных каналов образования ионов $He_2^+(C)$ является реакция [26]:

$$\operatorname{He}_{2}^{*} + \operatorname{He}^{+} \to \operatorname{He}_{2}^{+}(C) + \operatorname{He} + e, \qquad (5)$$

поэтому при добавке молекул H_2 к Не плотность ионов $He_2^+(C)$ уменьшается. В результате этого континуум $He_2^+(C-A)$ трансформируется в более интенсивный континуум HeH(A-X) (рис. 2). Процессы взаимодействия ионов He_2^+ с молекулами H_2 характеризуются значительной скоростью и дают существенный вклад в образование ионов HeH^+ и He_2H^+ [25]

$$\operatorname{He}_{2}^{+} + \operatorname{H}_{2} \to \begin{cases} \operatorname{HeH}^{+} + \operatorname{H} + \operatorname{He}, \\ \operatorname{He}_{2}\operatorname{H}^{+} + \operatorname{H}. \end{cases}$$
(6)

В дальнейшем ионы HeH⁺ и He₂H⁺ вступают в реации рекомбинации с медленными электронами (3), (4), которые приводят к образованию молекул HeH^{*}.

Обработка зависимости яркости полосы He₂^{*} с 505.7 nm (наиболее чувстительной к содержанию молекул H₂ в смеси He/H₂) от плотности H₂ по формуле Штерна-Фольмера для тушения люминесценции [27] показала, что произведение $k_t \tau = 1.4 \pm 0.2 \cdot 10^{-16}$ cm³ (τ — время жизни He₂^{*}). При $\tau = 10$ ns эффективная константа скорости тушения He₂^{*} молекулами H₂ составляет $1.4 \pm 0.2 \cdot 10^{-8}$ cm³/s.

Выводы

Исследование характеристик многоэлектродного коронного разряда в смеси He / H₂ высокого давления показало следующее. Разряд при P = 50-300 kPa и содержании $[H_2] \le 5$ kPa перекрывает весь межэлектродный промежуток, существует в стационарном режиме, а при более высоком содержании H_2 характеризуется набором горячих точечных зон, формирующихся вблизи острий иголок.

Вольт-амперная характеристика разряда описывается двумя прямыми линиями с разной скоростью роста тока, что указывает на наличие двух разных стадий данного разряда.

В области 360–650 nm обнаружено излучение молекул HeH(A-X) и He_2^* , а также линий 388.9, 501.6 и 587.6 nm HeI.

Основным механизмом заселения возбужденных состояний HeI является реакция диссоциативной рекомбинации ионов $\text{He}_{2}^{*}(v)$ с электронами.

Молекулы H₂ эффективно тушат излучение на переходах HeI и He₂.

Данный разряд может использоваться для поперечной электрической прокачки рабочих сред в плазменных излучателях высокого давления на молекулах HeH^{*}.

Список литературы

- Демьянов А.В., Дятко Н.А., Кочетов И.В. и др. // ЖТФ. 1998. Т. 58. Вып. 1. С. 75–79.
- [2] Демьянов А.В., Кочетов И.В., Паль А.Ф. и др. // ЖТФ. 1990. Т. 60. Вып. 1. С. 204–207.
- [3] *Зуев В.С., Канаев А.В., Михеев Л.Д.* // Квантовая электрон. 1984. Т. 11. № 1. С. 197–198.
- [4] Бункин Ф.В., Держиев В.И., Месяц Г.А. и др. // Квантовая электрон. 1984. Т. 11. № 6. С. 1277–1280.
- [5] Азимджанов Б.А., Арсланбеков Т.У., Бункин Ф.В. и др. // Квантовая электрон. 1985. Т. 12. № 8. С. 1557–1566.
- [6] Баранов А.И., Гурков К.В., Ломаев М.И. и др. // ПТЭ. 1994. № 4. С. 108–111.
- [7] Шуаибов А.К., Шевера И.В., Миня А.И. и др. // ПТЭ. 1997. № 5. С. 98–103.
- [8] Schmider D., Salamon T.I. // Opt. Commun. 1985. Vol. 55. N 1. P. 49–54.
- [9] Бердников А.А., Держиев В.И., Муравьев И.И. и др. // Квантовая электрон. 1987. Т. 14. № 11. С. 2198–2200.
- [10] Держиев В.И., Тарасенко В.Ф., Яковленко С.И. и др. // Труды ИОФАН. 1989. Т. 21. С. 5–43.
- [11] Шуаибов А.К., Миня А.И., Звенигородский В.В. и др. // Письма в ЖТФ. 1996. Т. 22. Вып. 13. С. 73–78.
- [12] Шуаибов А.К., Шимон Л.Л., Шевера И.В. // Квантовая электрон. 1997. Т. 24. № 1. С. 20–24.
- [13] Шуаибов А.К., Шевера И.В. // ЖТФ. Т. 67. Вып. 11. С. 15– 18.
- [14] Hiskes J.R. // Negative Ions and Beams. 4th Intern. Symp. New York, 1986. P. 34–38.
- [15] Стриганов А.Р., Одинцова Г.А. Таблицы спектральных линий атомов и атомарных ионов. Справочник. М.: Энергоатомиздат, 1982.
- [16] Spectroscopic Data. Homonuclear Molecules / Ed. S.N. Suchard, J.E. Melzer. IEI/Plemum. New York, 1976. P. 226–251.
- [17] Иванов В.А., Пенкин Н.П. // ЖПС. 1984. Т. 40. № 1. С. 5– 33.

- [18] Иванов В.А., Скобло Ю.Э. // Опт. и спектр. 1989. Т. 65. Вып. 3. С. 750–753.
- [19] *Митюрева А.А., Пенкин Н.П.* // Опт и спектр. 1989. Т. 66. Вып. 6. С. 1220–1224.
- [20] Ketterle W., Dodny A., Wolther H. // Chem. Phys. Lett. 1986. Vol. 129. N 1. P. 76–78.
- [21] Moller T., Beland M., Zimmerer G. // Chem. Phys. Lett. 1987. Vol. 136. N. 6. P. 551–556.
- [22] Алексеев А.Б., Иванов В.С., Правилов А.М. и др. // Опт. и спектр. 1990. Т. 69. Вып. 1. С. 93–96.
- [23] Пиотровский Ю.А., Толмачев Ю.А. // Опт. и спектр. 1982.
 Т. 52. Вып. 1. С. 33–38.
- [24] Евстигнеев В.В., Филиппов С.С. // Препринт Ин-та прикладной математики АН СССР. М., 1974. № 5. 20 с.
- [25] *Сыцько Ю.И., Яковленко С.И.* // Препринт ИАЭ. М., 1979. № 3138. 29 с.
- [26] Hill P.G., Herman P.R. // Phys. Rev. A. 1993. Vol. 47. N 6. P. 4837–4844.
- [27] Кондратьев В.Н., Никитин Е.Е. // Кинетика и механизм газофазных реакций. М.: Наука, 1974.